Меню
Публикации
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
Главный редактор

НИКИФОРОВ
Владимир Олегович
д.т.н., профессор
Партнеры
doi: 10.17586/2226-1494-2023-23-6-1136-1142
УДК 544.02
Рамановская спектроскопия нанокомпозитов ZnO/ZnS и ZnO/ZnSe, полученных методом сольвотермического микроволнового синтеза
Читать статью полностью

Язык статьи - английский
Ссылка для цитирования:
Аннотация
Ссылка для цитирования:
Рати И., Рини А.С., Акраджас А.У., Агустин M. Рамановская спектроскопия нанокомпозитов ZnO/ZnS и ZnO/ZnSe, полученных методом сольвотермического микроволнового синтеза // Научно-технический вестник информационных технологий, механики и оптики. 2023. Т. 23, № 6. С. 1136–1142 (на англ. яз.). doi: 10.17586/2226-1494-2023-23-6-1136-1142
Аннотация
Представлены нанокомпозиты ZnO/ZnS и ZnO/ZnSe, синтезированные сольвотермо-микроволновым методом. Для объяснения режима фононных колебаний применен метод рамановской спектроскопии. Полученная высокая интенсивность рамановского рассеяния подтвердила высокочастотную фононную моду гексагонального вюрцита ZnO. Наличие интенсивного комбинационного рассеяния света кубических структур ZnS и ZnSe свидетельствует о существовании продольной оптической фононной моды. Обнаружены небольшие сдвиги во всех модах ZnO для ZnO/ZnS и ZnO/ZnSe, которые указывают на наличие напряжения и деформации в кристаллической решетке. Исследованы изменения размера частиц с помощью конфокальной рамановской микроскопии. Показано, что изменения структуры и размеров частиц материала улучшили его характеристики. Подтверждено, что нанокомпозитные гетероструктуры, полученные простым химическим методом, применимы для создания оптоэлектронных устройств.
Ключевые слова: гетероструктуры, фононная мода колебаний, комбинационное рассеяние света, сольвотермо-микроволновый синтез, вюрцит
Список литературы
Список литературы
- Raha S., Ahmaruzzaman M. ZnO nanostructured materials and their potential applications: progress, challenges and perspectives // Nanoscale Advances. 2022. V. 8. N 4. P. 1868–1925. https://doi.org/10.1039/d1na00880c
- Theerthagiri J., Salla S., Senthil R.A., Nithyadharseni P., Madankumar A., Arunachalam P., Maiyalagan T., Kim H.-S. A review on ZnO nanostructured materials: energy, environmental and biological applications // Nanotechnology. 2019. V. 30. N 39. P. 392001. https://doi.org/10.1088/1361-6528/ab268a
- Park T., Lee K.E., Kim N., Oh Y., Yoo J.-K., Um M.-K. Aspect ratio-controlled ZnO nanorods for highly sensitive wireless ultraviolet sensor applications // Journal of Materials Chemistry C. 2017. V. 46. N 5. P. 12256–12263. https://doi.org/10.1039/C7TC04671E
- Chung D.S., Hall T.D., Cotella G., Lyu Q., Chun P., Aziz H. Significant lifetime enhancement in QLEDs by reducing interfacial charge accumulation via fluorine incorporation in the ZnO electron transport layer // Nano-Micro Letters. 2022. V. 14. N 1. P. 212. https://doi.org/10.1007/s40820-022-00970-x
- Kumar M., Patra A. Highly efficient and Reusable ZnO microflower photocatalyst on stainless steel mesh under UV–Vis and natural sunlight // Optical Materials. 2020. V. 107. P 110000. https://doi.org/10.1016/j.optmat.2020.110000
- Ali S., Saleem S., Salman M., Khan M. Synthesis, structural and optical properties of ZnS–ZnO nanocomposites // Materials Chemistry and Physics. 2020. V. 248. P. 122900, https://doi.org/10.1016/j.matchemphys.2020.122900
- Fang X., Zhai T., Gautam U.K., Li L., Wu L., Bando Y., Golberg D. ZnS nanostructures: From synthesis to applications // Progress in Materials Science. 2011. V. 56. N 2. P. 175–287. https://doi.org/10.1016/j.pmatsci.2010.10.001
- Kim J.S., Kim S.H., Lee H.S. Energy spacing and sub-band modulation of Cu doped ZnSe quantum dots // Journal of Alloys and Compounds. 2022. V. 914. P. 165372. https://doi.org/10.1016/j.jallcom.2022.165372
- Prabukanthan P., Rajesh Kumar T., Harichandran G. Influence of various complexing agents on structural, morphological, optical and electrical properties of electrochemically deposited ZnSe thin films // Journal of Materials Science: Materials in Electronics. 2017. V. 28. N 19. P. 14728–14737. https://doi.org/10.1007/s10854-017-7341-4
- Baranowska-Korczyc A., Kościński M., Coy E.L., Grześkowiak B.F., Jasiurkowska-Delaporte M. ZnS coating for enhanced environmental stability and improved properties of ZnO thin films // RSC Advances. 2018. V. 8. N 43. P. 24411–24421. https://doi.org/10.1039/c8ra02823k
- Khan A.U., Tahir K., Albalawi K., Khalil M.Y., Almarhoon Z.M., Zaki M.E.A., Latif S., Hassan H.M.A., Refat M.S., Munshi A.M. Synthesis of ZnO and ZnS nanoparticles and their structural, optical, and photocatalytic properties synthesized via the wet chemical method // Materials Chemistry and Physics. 2022. V. 291. P. 126667. https://doi.org/10.1016/j.matchemphys.2022.126667
- Chen R., Cao J., Duan Y., Hui Y., Chuong T.T., Ou D., Han F., Cheng F., Huang X., Wu B., Zheng N. High-efficiency, hysteresis-less, UV-stable perovskite solar cells with cascade ZnO-ZnS electron transport layer // Journal of the American Chemical Society. 2019. V. 141. N 1. P. 541–547. https://doi.org/10.1021/jacs.8b11001
- Cho S., Jang J.W., Lee J.S., Lee K.H. Porous ZnO-ZnSe nanocomposites for visible light photocatalysis // Nanoscale. 2012. V. 4. N 6. P. 2066–2071. https://doi.org/10.1039/c2nr11869f
- Kamruzzaman M., Zapien J.A. Synthesis and characterization of ZnO/ZnSe NWs/PbS QDs solar cell // Journal of Nanoparticle Research. 2017. V. 19. N 4. P. 125. https://doi.org/10.1007/s11051-016-3729-y
- Krithika S., Balavijayalakshmi J. Synthesis of molybdenum disulfide doped zinc oxide nanocomposites by microwave assisted method // Materials Research Express. 2019. V. 6. N 10. P. 105023. https://doi.org/10.1088/2053-1591/ab3828
- Kumar V., Sharma H., Singh S.K., Kumar S., Vij A. Enhanced near-band edge emission in pulsed laser deposited ZnO/c-sapphire nanocrystalline thin films // Applied Physics A: Materials Science and Processing. 2019. V. 125. N 3. P. 212. https://doi.org/10.1007/s00339-019-2485-0
- Khan A. Raman spectroscopic study of the ZnO nanostructures // Journal of the Pakistan Materials Society (JPMS).2010. V. 4. N 1. P. 5–9.
- Ridwan J., Yunas J., Umar A.A., Mohd Raub A.A., Hamzah A.A., Kazmi J., Nandiyanto A.B.D., Pawinanto R.E., Hamidah I. Vertically aligned Cu-doped ZnO nanorods for photocatalytic activity enhancement // International Journal of Electrochemical Science. 2022. V. 17. P. 220813. https://doi.org/10.20964/2022.08.10
- Abdelouhab Z.A., Djouadi D., Chelouche A., Touam T. Structural, morphological and Raman scattering studies of pure and Ce-doped ZnO nanostructures elaborated by hydrothermal route using nonorganic precursor // Journal of Sol-Gel Science and Technology. 2020. V. 95. N 1. P. 136–145. https://doi.org/10.1007/s10971-020-05293-0
- Sharma P., Bhati V.S., Kumar M., Sharma R., Mukhiya R., Awasthi K., Kumar M. Development of ZnO nanostructure film for pH sensing application // Applied Physics A: Materials Science and Processing. 2020. V. 126. N 4. P. 284. https://doi.org/10.1007/s00339-020-03466-w
- Bergman L., Chen X.B., Huso J., Morrison J.L., Hoeck H. Raman scattering of polar modes of ZnO crystallites // Journal of Applied Physics. 2005. V. 98. N 9. P. 093507. https://doi.org/10.1063/1.2126784
- Abdulrahman A.F., Ahmed S.M., Ahmed N.M., Almessiere M.A. Fabrication, characterization of ZnO nanorods on the flexible substrate (Kapton Tape) via chemical bath deposition for UV photodetector applications // AIP Conference Proceedings. 2017. V. 1875. N 1. P. 020004. https://doi.org/10.1063/1.4998358
- Cheng Y.C., Jin C.Q., Gao F., Wu X.L., Zhong W., Li S.H., Chu P.K. Raman scattering study of zinc blende and wurtzite ZnS // Journal of Applied Physics. 2009. V. 106. N 12. P. 123505. https://doi.org/10.1063/1.3270401
- Kao C.H., Su W.M., Li C.Y., Weng W.C., Weng C.Y., Cheng C.-C., Lin Y.-S., Lin C.F., Chen H. Fabrication and characterization of ZnS/ZnO core shell nanostructures on silver wires // AIP Advances. 2018. V. 8. N 6. P. 065106. https://doi.org/10.1063/1.5027015
- Meng X., Li L., Li K., Zhou P., Zhang H., Jia J., Sun T. Desulfurization of fuels with sodium borohydride under the catalysis of nickel salt in polyethylene glycol // Journal of Cleaner Production. 2018. V. 176. P. 391–398. https://doi.org/10.1016/j.jclepro.2017.12.152
- Zhou W., Liu R., Tang D., Zou B. The effect of dopant and optical micro-cavity on the photoluminescence of Mn-doped ZnSe nanobelts // Nanoscale Research Letters. 2013. V. 8. N 1. P. 1–10. https://doi.org/10.1186/1556-276X-8-314
- Yang X., Wang Q., Tao Y., Xu H. A modified method to prepare diselenides by the reaction of selenium with sodium borohydride // Journal of Chemical Research - Part S. 2002. P. 160–161. https://doi.org/10.3184/030823402103171726
- Shan C.X., Liu Z., Zhang X.T., Wong C.C., Hark S.K. Wurtzite ZnSe nanowires: Growth, photoluminescence, and single-wire Raman properties // Nanotechnology. 2006. V. 17. N 22. P. 5561–5564. https://doi.org/10.1088/0957-4484/17/22/006