doi: 10.17586/2226-1494-2024-24-5-849-857


УДК 004.491

Обнаружение скрытого вредоносного программного обеспечения с использованием глубокой нейронной сети с выбором признаков ANOVA на наборе данных CIC‑MalMem-2022

Хаджила М., Мерзуг М., Ферхи В., Муссауи Д., Буйден А., Хашеми М.


Читать статью полностью 
Язык статьи - английский

Ссылка для цитирования:
Хаджила М., Мерзуг М., Ферхи В., Муссауи Д., Буйден А.Б., Хашеми М.Х. Обнаружение скрытого вредоносного программного обеспечения с использованием глубокой нейронной сети с выбором признаков ANOVA на наборе данных CIC-MalMem-2022 // Научно-технический вестник информационных технологий, механики и оптики. 2024. Т. 24, № 5. С. 849–857 (на англ. яз.). doi: 10.17586/2226-1494-2024-24-5-849-857


Аннотация
Анализ вредоносного программного обеспечения включает исследование функциональности, поведения и потенциальных рисков. Искусственный интеллект и глубокое обучение открывают возможности автоматизированного, интеллектуального и адаптивного анализа вредоносного программного обеспечения. В работе предлагается модель глубокой нейронной сети (Deep Neural Network, DNN), созданная на основе признаков, выбранных с помощью F-теста дисперсионного анализа (ANalysis Of VAriance, ANOVA), для повышения точности распознавания путем выявления информативных признаков. DNN-ANOVA представляет собой метод выбора признаков, используемый для анализа числовых входных данных, когда целевая переменная является категориальной. К наиболее релевантным признакам относятся те, значения оценки которых превышают определенный порог, равный отношению суммы оценок всех признаков к общему числу признаков. Эксперименты выполнены на наборе данных CIC-MalMem-2022. Проведен анализ обнаружения или отсутствия вредоносного программного обеспечения с использованием бинарной классификации, а также полиномиальной классификации для определения его типа. Согласно результатам F-теста, модель DNN-ANOVA достигает наилучших значений: 100 % — precision, 99,99 % — accuracy, 99, 99 % — F1-score и 99,98 % — recall для бинарной классификации. Кроме того, DNN-ANOVA превосходит текущие работы с общим показателем точности (accuracy) 85,83 % для групповых атак и 73,98 % для индивидуальных атак в случае полиномиальной классификации.

Ключевые слова: обнаружение вредоносного программного обеспечения, глубокое обучение, выбор признаков ANOVA, бинарная классификация, полиномиальная классификация, набор данных

Список литературы
  1. Kramer S.,Bradfield J.C. A general definition of malware//Journal in Computer Virology. 2010. V. 6.N 2. P. 105–114.https://doi.org/10.1007/s11416-009-0137-1
  2. Li C., Gaudiot J.L. Detecting malicious attacks exploiting hardware vulnerabilities using performance counters//Proc. of the2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC).V. 1.2019. P. 588–597. https://doi.org/10.1109/compsac.2019.00090
  3. Sinanovic H., Mrdovic S. Analysis of Mirai malicious software// Proc. of the25th International Conference on Software, Telecommunications and Computer Networks (SoftCOM). 2017. P. 1–5. https://doi.org/10.23919/softcom.2017.8115504
  4. Singh R., Kumar H., Singla R.K., Ketti R.R. Internet attacks and intrusion detection system: A review of the literature//Online Information Review. 2017. V. 41. N 2.P. 171–184.https://doi.org/10.1108/oir-12-2015-0394
  5. Yadav B., Tokekar S. Deep learning in malware identification and classification//Malware Analysis Using Artificial Intelligence and Deep Learning.Springer, Cham,2021. P. 163–205.https://doi.org/10.1007/978-3-030-62582-5_6
  6. Kertysova K., Frinking E., van den Dool K., Maricic A., Bhattacharyya K. Cybersecurity: Ensuring awareness and resilience of the private sector across Europe in face of mounting cyber risks-Study. Bruxelles, Belgium:European Economic and Social Committee,2018.
  7. Gopinath M., Sethuraman S.C. A comprehensive survey on deep learning based malware detection techniques// Computer Science Review.2023. V. 47.P. 100529.https://doi.org/10.1016/j.cosrev.2022.100529
  8. Faruk M.J.H., Shahriar H., Valero M., Barsha F.L., Sobhan S., Khan M.A.,Whitman M., Cuzzocrea A., Lo D., Rahman A.,Wu F. Malware detection and prevention using artificial intelligence techniques//Proc. of theIEEE International Conference on Big Data (Big Data).2021. P. 5369–5377.https://doi.org/10.1109/bigdata52589.2021.9671434
  9. Vigna G. How AI will help in the fight against malware//Retrieved from TechBeacon. 2020.
  10. Schmitt M. Securing the Digital World: Protecting smart infrastructures and digital industries with Artificial Intelligence (AI)-enabled malware and intrusion detection // Journal of Industrial Information Integration. 2023. V. 36. P. 100520. https://doi.org/10.1016/j.jii.2023.100520
  11. Aljabri M., Alhaidari F., Albuainain A., Alrashidi S., Alansari J., Alqahtani W., Alshaya J. Ransomware detection based on machine learning using memory features // Egyptian Informatics Journal. 2024. V. 25. P. 100445. https://doi.org/10.1016/j.eij.2024.100445
  12. Ababneh M., Aljarrah A. Cybersecurity: Malware multi-attack detector on android-based devices using deep learning methods // Journal of Theoretical and Applied Information Technology. 2024. V. 102. N 1. P. 144–166.
  13. Majid A.A.M., Alshaibi A.J., Kostyuchenko E., Shelupanov A. A review of artificial intelligence based malware detection using deep learning // Materials Today: Proceedings. 2023. V. 80. Part 3. P. 2678–2683. https://doi.org/10.1016/j.matpr.2021.07.012
  14. Riaz S., Latif S., Usman S.M., Ullah S.S., Algarni A.D., Yasin A., Anwar A., Elmannai H., Hussain S. Malware Detection in Internet of Things (IoT) devices using deep learning // Sensors. 2022. V. 22. N 23. P. 9305. https://doi.org/10.3390/s22239305
  15. Xing X., Jin X., Elahi H., Jiang H., Wang G. A malware detection approach using autoencoder in deep learning // IEEE Access. 2022. V. 10. P. 25696–25706. https://doi.org/10.1109/access.2022.3155695
  16. Ucci D., Aniello L., Baldoni R. Survey of machine learning techniques for malware analysis // Computers & Security. 2019. V. 81. P. 123–147. https://doi.org/10.1016/j.cose.2018.11.001
  17. Shafin S.S., Karmakar G., Mareels I. Obfuscated memory malware detection in resource-constrained IoT devices for smart city applications//Sensors. 2023. V. 23. N 11.P. 5348.https://doi.org/10.3390/s23115348
  18. Mezina A., Burget R. Obfuscated malware detection using dilated convolutional network//Proc. of the14th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT).2022. P. 110–115.https://doi.org/10.1109/icumt57764.2022.9943443
  19. Brownlee J. How to perform feature selection with numerical input data//Machine Learning Mastery. 2020.
  20. Brownlee J. How to choose a feature selection method for machine learning//Machine Learning Mastery. 2019.
  21. Cai J., Luo J., Wang S., Yang S. Feature selection in machine learning: A new perspective//Neurocomputing. 2018. V. 300.P. 70–79.https://doi.org/10.1016/j.neucom.2017.11.077
  22. Payton A.M. A review of spyware campaigns and strategies to combat them//Proc.of the 3rd Annual Conference on Information Security Curriculum Development.2006. P. 136–141.https://doi.org/10.1145/1231047.1231077
  23. Carrier T., Victor P., Tekeoglu A., Lashkari A. Detecting obfuscated malware using memory feature engineering // Proc. of the 8th International Conference on Information Systems Security and Privacy ICISSP. V. 1. 2022. P. 177–188. https://doi.org/10.5220/0010908200003120
  24. Mallikarajunan K.N., Preethi S.R., Selvalakshmi S., Nithish N. Detection of spyware in software using virtual environment//Proc. of the3rd International Conference on Trends in Electronics and Informatics (ICOEI).2019. P. 1138–1142. https://doi.org/10.1109/icoei.2019.8862547
  25. Jonasson D., SigholmJ. What is Spyware?.TDDC03 Projects, Department of Computer and Information Science.Sewden: Linkopings University, 2005.
  26. Pelchen-Matthews A., Raposo G., Marsh M. Endosomes, exosomes and Trojan viruses//Trends in Microbiology. 2004. V. 12. N 7.P. 310–316.https://doi.org/10.1016/j.tim.2004.05.004
  27. Liu Y., Mondal A., Chakraborty A., Zuzak M., Jacobsen N., Xing D., Srivastava A. A survey on neural trojans//Proc. of the21st International Symposium on Quality Electronic Design (ISQED).2020. P. 33–39.https://doi.org/10.1109/isqed48828.2020.9137011
  28. Brewer R. Ransomware attacks: detection, prevention and cure// Network Security.2016. V. 2016. N 9.P. 5–9.https://doi.org/10.1016/s1353-4858(16)30086-1
  29. Tuttle H. Ransomware attackers turn to double extortion//Risk Management. 2021. V. 68. N 2.P. 8–9.
  30. Nershi K., Grossman S. Assessing the Political Motivations Behind Ransomware Attacks// SSRN Electronic Journal. 2023.https://doi.org/10.2139/ssrn.4507111
  31. Casas P., Blancas J., Villanueva A. Ransomware Report 2023: targets, motives, and trends// Outpost24. 07 Feb.2023[Электронный ресурс]. URL: https://outpost24.com/blog/ransomware-report-2023-targets-motives-and-trends/(датаобращения: 01.08.2024).
  32. Sawyer S.F. Analysis of variance: the fundamental concepts//Journal of Manual & Manipulative Therapy. 2009. V. 17. N 2.P. 27E–38E.https://doi.org/10.1179/jmt.2009.17.2.27e


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Информация 2001-2024 ©
Научно-технический вестник информационных технологий, механики и оптики.
Все права защищены.

Яндекс.Метрика