НИКИФОРОВ
Владимир Олегович
д.т.н., профессор
doi: 10.17586/2226-1494-2025-25-5-979-987
УДК 519.254
Волновая регрессия: нелинейная когнитивная эвристика
Читать статью полностью
Ссылка для цитирования:
Аннотация
Введение. Качество регрессии определяется выбором аппроксимирующей функции, более или менее точно соответствующей процессу порождения данных. Ключевым классом таких процессов являются когнитивные процессы, часто имеющие волновой характер. Соответствующая математическая структура положена в основу метода регрессии поведенческих данных. Метод. Волновая регрессия строится путем обобщения коэффициентов классической линейной регрессии вещественных весов на комплекснозначные амплитуды, модули и фазы которых кодируют усиление и задержку когнитивных волн. При этом целевая величина порождается квадратом модуля суммы амплитудных влияний базисных признаков. Построенные регрессионные модели апробированы на массиве оценок успеваемости учебной группы в сравнении с линейными регрессиями с тем же числом параметров. Основные результаты. При большом числе базисных признаков точность волновой регрессии близка к точности линейных моделей. При уменьшении числа признаков базисных признаков ошибка линейной регрессии растет, тогда как ошибка волновой регрессии снижается. Наибольшая разница наблюдается в троичном режиме, когда целевой признак порождается парой базисных признаков. В этом случае ошибка трехпараметрической волновой регрессии на 2,5 % ниже ошибки полной линейной регрессии с 21 параметром. Обсуждение. Полученное преимущество обусловлено особым типом нелинейности волновой регрессии, характерной для прагматических эвристик естественного мышления. Эта нелинейность позволяет использовать смысловые корреляции признаков, не видимые другими регрессионными моделями. Представленный подход к использованию этих корреляций открывает возможности создания экономичных алгоритмов природоподобного интеллекта и анализа данных.
Благодарности. Исследование выполнено за счет гранта Российского научного фонда № 23-71-01046.

