Аннотации номера

ОПТИЧЕСКИЕ СИСТЕМЫ И ТЕХНОЛОГИИ

625
Предмет исследования. Представлена идея объединения различных стадий производства оптических приборов в единую логическую последовательность от проектирования оптических элементов, через механическую и технологическую стадии производства, до расчета себестоимости их изготовления. Решение привлекательно тем, что можно контролировать весь процесс и экономить время и бюджет, чтобы выбрать наиболее подходящий вариант производства. Важно, чтобы эта информация была объективной, связанной с конкретным видом и объемом производства, и легко проверялась и контролировалась на начальном этапе — стадии проектирования. Метод. Предложено объединение всех этапов создания оптического прибора «под ключ», включая анализ и визуализацию вариантов оптической схемы прибора, учет механических и технологических аспектов и расчет стоимости «проект-продукт», в зависимости от объема производства, с рекомендациями по его оптимизации. Известно, что при проектировании оптических систем, особенно для обеспечения качества изображения, приближающегося к дифракционному пределу, существует несколько альтернативных схемных решений — например, варианты линз, содержащие только сферические поверхности и имеющие разное количество оптических элементов в схеме, или линзы, использующие поверхности, отличные от сферических. Основные результаты. Выполнен выбор оптимальной оптической схемы объектива и оценка возможности изготовления оптического прибора на самом раннем этапе, когда известны расчетные варианты оптической схемы, допуски на изготовление оптических элементов и объем производства. Определена стоимость изготовления оптических элементов данного устройства для различных вариантов оптической схемы. Проведено исследование альтернативных схемных решений — например, варианты линз, содержащие только сферические поверхности, имеющие различное количество оптичес­ких элементов в схеме или использующие поверхности, отличные от сферических. На стадии проектирования выбор затруднен, и в этом случае решение разрабатывается с учетом технологических процессов производства линз. Для иллюстрации использования программного средства PanDao разработаны и сопоставлены две схемы объективов с вынесенным входным зрачком, совпадающим с апертурной диафрагмой линзы: конструкция первого объектива состоит из трех сферических компонентов; второй объектив — комбинация из четырех оптических компонентов асферической конструкции. Практическая значимость. Показана возможность анализа технологичности линзовой системы на этапе оптического проектирования, а также определение оптимальной технологической последовательности изготовления оптического прибора в условиях заданного объема его производства. Моделирование технологического процесса изготовления различных оптических компонентов позволяет выбрать оптимальную производственную цепочку и оценить необходимость и цены изготовления, сборки и испытаний оборудования. Дополнительным преимуществом является расчет стоимости устройства на ранней стадии проектирования, что помогает в ряде случаев оптимизировать его оптическую схему, а иногда даже избежать стадии прототипирования. Этот подход впервые реализован в программном обеспечении PanDao и теперь доступен широкому кругу исследователей.
634
642
649

НОВЫЕ МАТЕРИАЛЫ И НАНОТЕХНОЛОГИИ

661

КОМПЬЮТЕРНЫЕ СИСТЕМЫ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ

667
677
683
692
1. Moakes P. 5G new radio architecture and challenges [Электронный ресурс]. URL: https://www.commagility.com/images/pdfs/white_papers/CommAgility_5G_New_Radio_white_paper.pdf. (дата обращения: 12.07.2020). 2. Ghosh A. 5G New Radio (NR): Physical Layer Overview and Performance. IEEE Communication Theory Workshop [Электронный ресурс]. URL: http://ctw2018.ieee-ctw.org/files/2018/05/5G-NR-CTW-final.pdf. (дата обращения: 13.07.2020). 3. Popovski P., Trillingsgaard K.F., Simeone O., Durisi G. 5G Wireless network slicing for eMBB, URLLC, and mMTC: A communication-theoretic view // IEEE Access. 2018. V. 6. P. 55765–55779. doi: 10.1109/ACCESS.2018.2872781 4. Mallinson K. 3GPP. The path to 5G: as much evolution as revolution. The mobile broadband standard [Электронный ресурс]. URL: http://www.3gpp.org/news-events/3gpp-news/1774-5g_wiseharbour (дата обращения: 13.07.2020). 5. Богатырев В.А., Богатырев С.В., Богатырев А.В. Оптимизация кластера с ограниченной доступностью кластерных групп // Научно-технический вестник Санкт-Петербургского государственного университета информационных технологий, механики и оптики. 2011. № 1(71). С. 63–67. 6. Богатырев В.А., Богатырев А.В., Богатырев С.В. Перераспределение запросов между вычислительными кластерами при их деградации // Известия высших учебных заведений. Приборостроение. 2014. Т. 57. № 9. С. 54–58. 7. Kopetz T., Permuter H., Shamai Sh. Multiple access channels with combined cooperation and partial cribbing // IEEE Transactions on Information Theory. 2016. V. 62. N 2. P. 825–848. doi: 10.1109/TIT.2015.2499759. 8. Назаров А.А., Шохор С.Л. Исследование управляемого несинхронного множественного доступа в спутниковых сетях связи с оповещением о конфликте // Проблемы передачи информации. 2000. Т. 36. № 1. С. 77–89. 9. Поляков И.Ю., Клименко А.Н., Зыков Д.Д., Чеботаев П.В., Шелупанов А.А., Мякочин Ю.О. Современное состояние проблемы передачи данных в гетерогенных системах связи // Доклады Томского государственного университета систем управления и радиоэлектроники. 2017. Т. 20. № 3. С. 177–180. doi: 10.21293/1818-0442-2017-20-3-177-180 10. Тюрин С.В., Шмарин И.В. Протокол множественного доступа для беспроводной сети с временным разделением каналов // Вестник Воронежского государственного технического университета. 2014. Т. 10. № 6. С. 9–15. 11. Постников С.А., Струнская-Зленко Л.В. Моделирование протокола управления доступом к среде передачи для сети с временным разделением каналов // T-Comm. 2009. № S3. С. 112–116. 12. Хабибулин Н.Ф., Шкердин А.Н., Щербенко А.Н. Повышение пропускной способности систем передачи с переспросом за счет введения дополнительной связи между процессами декодирования с исправлением и обнаружением ошибок // Интернет-журнал Науковедение. 2016. Т. 8. № 3(34). С. 143. 13. Тучкин А.В. Принципы функционирования протокола канального уровня для пакетной передачи разнородного трафика по низкоскоростным каналам // T-Comm. 2008. Т. 2. № 3. С. 31–33. 14. Махров С.С. Использование систем моделирования беспроводных сенсорных сетей NS 2 и OMNeT++ // T-Comm. 2013. Т. 7. № 10. С. 67–69. 15. Хабаров С.П. Основы моделирования беспроводных сетей в среде OMNeT++: учебное пособие. СПб.: Издательство «Лань», 2019. 260 с.: ил. 16. Думов М.И., Хабаров С.П. Использование OMNET++ для моделирования беспроводных Wi-Fi сетей // Информационные системы и технологии: теория и практика: сборник научных трудов. Вып. 10. Ч. 1. СПб.: Санкт-Петербургский государственный лесотехнический университет имени С.М. Кирова, 2018. С. 44–53. 17. Noskov I.I., Bogatyrev V.A. Simulating of fault-tolerant gateway based on VRRP protocol in OMNeT++ environment // CEUR Workshop Proceedings. 2019. V. 2522. P. 111–120. 18. Заяц A.М., Хабаров С.П. Организация доступа к беспроводным Ad Hoc сетям информационных систем мониторинга лесных территорий из среды ОС Windows 10 // Известия Санкт-Петербургской лесотехнической академии. 2018. № 223. С. 285–299. doi: 10.21266/2079-4304.2018.223.285-299 19. Носков И.И., Богатырев В.А., Сластихин И.А. Имитационная модель локальной компьютерной сети с агрегированием каналов и случайным методом доступа при резервировании передач // Научно-технический вестник информационных технологий, механики и оптики. 2018. Т. 18. № 6. С. 1047–1053. doi: 10.17586/2226-1494-2018-18-6-1047-1053 20. Хабаров С.П. Моделирование Ethernet сетей в среде OMNeT++ INET framework // Научно-технический вестник информационных технологий, механики и оптики. 2018. Т. 18. № 3. С. 462–472. doi: 10.17586/2226-1494-2018-18-3-462-472 21. Noskov I.I., Bogatyrev V.A. Multipath redundant transmissions of critical to delays packets based on UDP protocol // CEUR Workshop Proceedings. 2020. V. 2590. P. 1–12. 22. Хабаров С.П. Доступ к беспроводным Ad Hoc сетям средствами ОС Windows 10 // Информационные системы и технологии: теория и практика: сборник научных трудов. Вып. 10. Ч. 2. СПб.: Санкт-Петербургский государственный лесотехнический университет имени С.М. Кирова, 2018. С. 50–60. 23. Noskov I.I., Bogatyrev V.A., Slastikhin I.A. Simulation of computer network with switch and packet reservation // CEUR Workshop Proceedings. 2019. V. 2344. 24. Noskov I.I., Bogatyrev V.A. Interaction model of computer nodes based on transfer reservation at multipath routing // Proc. of the Wave Electronics and its Application in Information and Telecommunication Systems (WECONF 2019). 2019. P. 8840607. doi: 10.1109/WECONF.2019.8840607
701
708
714
722
729
739
747
1. Man-in-the-middle attack [Электронный ресурс]. URL: https://en.wikipedia.org/wiki/Man-in-the-middle_attack (дата обращения: 19.07.2020). 2. Shu G., Lee D. Network protocol system fingerprinting - A formal approach // Proc. INFOCOM 2006: 25th IEEE International Conference on Computer Communications. 2006. P. 4146810. doi: 10.1109/INFOCOM.2006.157 3. Carnut M., Gondim J. ARP spoofing detection on switched Ethernet networks: A feasibility study // Proc. of the 5th Simposio Seguranca em Informatica. 2003. 4. Liu H., Zhang Y., Wang H., Yang W., Li J., Gu D. TagDroid: hybrid SSL certificate verification in android // Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). 2015. V. 8958. P. 120–131. doi: 10.1007/978-3-319-21966-0_9 5. Smith S. The Internet of Risky Things: Trusting the Devices That Surround Us. O'Reilly Media, Inc., 2017. 240 p. 6. Куликова О.М., Суворова С.Д. Таргетированная реклама как инструмент построения коммуникаций с целевой аудиторией // Экономика и бизнес: теория и практика. 2020. № 3-2(61). P. 98–102 [Электронный ресурс]. URL: https://cyberleninka.ru/article/n/targetirovannaya-reklama-kak-instrument-postroeniya-kommunikatsiy-s-tselevoy-auditoriey (дата обращения: 10.09.2020). doi: 10.24411/2411-0450-2020-10218 7. Zalewski M. p0f v3 [Электронный ресурс]. URL: http://lcamtuf.coredump.cx/p0f3/ (дата обращения: 19.07.2020). 8. Transmission Control Protocol (TCP) Parameters [Электронный ресурс]. URL: https://www.iana.org/assignments/tcp-parameters/tcp-parameters.xhtml (дата обращения: 19.07.2020). 9. Satori [Электронный ресурс]. URL: https://github.com/xnih/satori/blob/master/fingerprints/tcp.xml (дата обращения: 19.07.2020). 10. Intercept the planet! [Электронный ресурс]. URL: http://intercepter-ng.blogspot.com/ (дата обращения: 19.07.2020). 11. Laurent D. Ethernet vendor codes, and well-known MAC addresses. The first single application for the entire DevOps lifecycle — GitLab. URL: https://gitlab.com/wireshark/wireshark/raw/master/manuf (дата обращения: 19.07.2020). 12. Husák M., Čermák M., Jirsík T., Čeleda P. HTTPS traffic analysis and client identification using passive SSL/TLS fingerprinting // EURASIP Journal on Information Security. 2016. V. 2016. N 1. P. 6. doi: 10.1186/s13635-016-0030-7 13. JA3 - A method for profiling SSL/TLS Clients [Электронный ресурс]. URL: https://github.com/salesforce/ja3 (дата обращения: 19.07.2020). 14. Chrome Platform Status. GREASE for TLS. Last updated on 2017-06-14 [Электронный ресурс]. URL: https://www.chromestatus.com/feature/6475903378915328 (дата обращения: 19.07.2020). 15. mitmproxy - an interactive HTTPS proxy [Электронный ресурс]. URL: https://mitmproxy.org/ (дата обращения: 19.07.2020). 16. Воробьева А.А. Отбор информативных признаков для идентификации Интернет-пользователей по коротким электронным сообщениям // Научно-технический вестник информационных технологий, механики и оптики. 2017. Т. 17. № 1. C. 117–128. doi: 10.17586/2226-1494-2017-17-1-117-128
755

МАТЕМАТИЧЕСКОЕ И КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ

761

КРАТКИЕ СООБЩЕНИЯ

767
770
Информация 2001-2020 ©
Научно-технический вестник информационных технологий, механики и оптики.
Все права защищены.

Яндекс.Метрика