A. A. Kapitonov, S. V. Aranovskiy, R. Ortega

Read the full article  ';
Article in English


Abstract. A problem of output robust control for a system with power nonlinearity is considered. The considered problem can be rewritten as a stabilization problem for a system with polynomial nonlinearity by introducing the error term. The problem of temperature regulation is considered as application; the rapid thermal processes in vapor deposition processing are studied. Modern industrial equipment uses complex sensors and control systems; these devices are not available for laboratory setups. The limited amount of available sensors and other technical restrictions for laboratory setups make it an actual problem to design simple low-order output control laws. The problem is solved by the consecutive compensator approach. The paper deals with a new type of restriction which is a combination of linear and power restrictions. It is shown that the polynomial nonlinearity satisfies this restriction. Asymptotical stability of the closed-loop system is proved by the Lyapunov functions approach for the considered nonlinear function; this contribution extends previously known results. Numerical simulation of the vapor deposition processing illustrates that the proposed approach results in zero-mean tracking error with standard deviation less than 1K.

Keywords: robust control, polynomial nonlinearity, temperature regulation, vapor deposition processing.

Acknowledgements. This work was partially financially supported by the Government of the Russian Federation grant 074-U01), the Russian Ministry of Education and Science (project 14.Z50.31.0031)

1.     Лундин В.В., Сахаров А.В., Цацульников А.Ф., Заварин Е.Е., Бесюлькин А.И., Фомин А.В., Сизов Д.С. Выращивание эпитаксиальных слоев AlGaNи сверхрешеток AlGaN/GaNметодом газофазной эпитаксии из металлоорганических соединений // Физика и техника полупроводников. 2004. Т. 38. № 6. С. 705–709.
2.     Schaper C.D., Cho Y.M., Park P., Norman S.A., Gyugyi P., Hoffmann G., Balemi S., Boyd S.P., Franklin G., Kailath T., Saraswat K.C. Modeling and control of rapid thermal processing // Proc. SPIE – The International Society for Optical Engineering. 1992. V. 1595. P. 2–17.
3.     Schaper C.D., Moslehi M.M., Saraswat K.C., Kailath T. Modeling, identification, and control of rapid thermal processing systems // Journal of the Electrochemical Society. 1994. V. 141. N 11. P. 3200–3209.
4.     Ebert J., De Roover D., Porter L.L., Lisiewicz V.A., Ghosal S., Kosut R.L., Emami-Naeini A. Model-based control of rapid thermal processing for semiconductor wafers // Proceedings of the American Control Conference. 2004. V 5. P. 3910–3921.
5.     Льюнг Л. Идентификация систем: Теория для пользователя: Пер. с англ. М.: Наука, 1991. 432 с.
6.     Astrom K.J. Maximum likelihood and prediction error methods // Automatica. 1980. V. 16. N 5. P. 551–574.
7.     Söderström T., Stoica P., Friedlander B. An indirect prediction error method for system identification // Automatica. 1991. V. 27. N. 1. P. 183–188.
8.     Diop S., Grizzle J.W., Chaplais F. On numerical differentiation algorithms for nonlinear estimation // Proceedings of the IEEE Conference on Decision and Control. 2000. V. 2. P. 1133–1138.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.