ROBUST REGULATION FOR SYSTEMS WITH POLYNOMIAL NONLINEARITY APPLIED TO RAPID THERMAL PROCESSES

A. A. Kapitonov, S. V. Aranovskiy, R. Ortega


Read the full article  ';
Article in English


Abstract

Abstract. A problem of output robust control for a system with power nonlinearity is considered. The considered problem can be rewritten as a stabilization problem for a system with polynomial nonlinearity by introducing the error term. The problem of temperature regulation is considered as application; the rapid thermal processes in vapor deposition processing are studied. Modern industrial equipment uses complex sensors and control systems; these devices are not available for laboratory setups. The limited amount of available sensors and other technical restrictions for laboratory setups make it an actual problem to design simple low-order output control laws. The problem is solved by the consecutive compensator approach. The paper deals with a new type of restriction which is a combination of linear and power restrictions. It is shown that the polynomial nonlinearity satisfies this restriction. Asymptotical stability of the closed-loop system is proved by the Lyapunov functions approach for the considered nonlinear function; this contribution extends previously known results. Numerical simulation of the vapor deposition processing illustrates that the proposed approach results in zero-mean tracking error with standard deviation less than 1K.


Keywords: robust control, polynomial nonlinearity, temperature regulation, vapor deposition processing.

Acknowledgements. This work was partially financially supported by the Government of the Russian Federation grant 074-U01), the Russian Ministry of Education and Science (project 14.Z50.31.0031)

References
1.     Лундин В.В., Сахаров А.В., Цацульников А.Ф., Заварин Е.Е., Бесюлькин А.И., Фомин А.В., Сизов Д.С. Выращивание эпитаксиальных слоев AlGaNи сверхрешеток AlGaN/GaNметодом газофазной эпитаксии из металлоорганических соединений // Физика и техника полупроводников. 2004. Т. 38. № 6. С. 705–709.
2.     Schaper C.D., Cho Y.M., Park P., Norman S.A., Gyugyi P., Hoffmann G., Balemi S., Boyd S.P., Franklin G., Kailath T., Saraswat K.C. Modeling and control of rapid thermal processing // Proc. SPIE – The International Society for Optical Engineering. 1992. V. 1595. P. 2–17.
3.     Schaper C.D., Moslehi M.M., Saraswat K.C., Kailath T. Modeling, identification, and control of rapid thermal processing systems // Journal of the Electrochemical Society. 1994. V. 141. N 11. P. 3200–3209.
4.     Ebert J., De Roover D., Porter L.L., Lisiewicz V.A., Ghosal S., Kosut R.L., Emami-Naeini A. Model-based control of rapid thermal processing for semiconductor wafers // Proceedings of the American Control Conference. 2004. V 5. P. 3910–3921.
5.     Льюнг Л. Идентификация систем: Теория для пользователя: Пер. с англ. М.: Наука, 1991. 432 с.
6.     Astrom K.J. Maximum likelihood and prediction error methods // Automatica. 1980. V. 16. N 5. P. 551–574.
7.     Söderström T., Stoica P., Friedlander B. An indirect prediction error method for system identification // Automatica. 1991. V. 27. N. 1. P. 183–188.
8.     Diop S., Grizzle J.W., Chaplais F. On numerical differentiation algorithms for nonlinear estimation // Proceedings of the IEEE Conference on Decision and Control. 2000. V. 2. P. 1133–1138.


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика