A. A. Isaeva, A. V. Neustroev

Read the full article  ';
Article in Russian

The paper deals with the results of Monte Carlo simulation of light propagation in a media with complex structure and dynamics by an original speckle-correlometry approach based on ring-like apertures and localized source of probe light. The «dynamic» lengthy objects with different geometry and depth location in the «static» inhomogeneous layer imitating biotissues with different characteristics of blood microcirculation were chosen as simulated media. The backscattering coefficient of laser light for the simulated media evaluated as a ratio of the «dynamic» partial components of the backscattered field to the full backscattered field is obtained. At the same time the «dynamic» partial components of the backscattered field and the full backscattered field are detected by the ring detector with the set value of ring aperture radius. The depth location of «dynamic» lengthy objects was determined analyzing the results of the dependence of the backscattering coefficient on the ring detector radii. It was also shown that the dependences of the backscattering coefficient on the ring detector radius in the case of probed media with different optical properties and containing the «dynamic» lengthy object with different geometric sizes can be described by the δ-like function. But the displacement of the peak value of δ-like function can be caused by the change of the scattering anisotropy factor

Keywords: scattering, laser light, speckles, simulated media

Acknowledgements. The work has been carried out under financial support of the Ministry of Education and Science of the Russian Federation.

 1.     Briers J.D. Webster S. Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow. Journal of Biomedical Optics, 1996, vol. 1, no. 2, pp. 174−179.
2.     Briers J.D. Laser Doppler and time-varying speckle: a reconciliation. Journal of Optical Society of America A: Optics and Image Science, and Vision, 1996, vol. 13, no. 2, pp. 345−350.
3.     RichardsG.and Briers J.D. Capillary blood flow monitoring using laser speckle contrast analysis (LASCA): improving the dynamic range. Proc. of SPIE,1997, vol. 2981, pp. 160−171.doi: 10.1117/12.274304
4.     Zimnyakov D.A., Khmara M.B., Vilensky M.A., Kozlov V.V., Sadovoǐ A.V., Gorfinkel I.V., Zdrajevsky R.A., Isaeva A.A. Speckle-correlation monitoring of the microhemodynamics of internal organs. Optics and Spectroscopy, 2009, vol. 107, no. 6, pp. 891­−897. doi: 10.1134/S0030400X09120091
5.     Skipetrov S.E., Maynard R. Dynamic multiple scattering of light in multilayer turbid media. Physics Letters, Section A: General, Atomic and Solid State Physics, 1996, vol. 217, no. 2–3, pp. 181−185. doi:10.1016/0375-9601(96)00335-0
6.     Boas D.A., Dunn A.K. Laser speckle contrast imaging in biomedical optics. Journal of Biomedical Optics, 2010, vol. 15, no. 1, art. 011109.
7.     Vilensky M.A., Agafonov D.N., Zimnyakov D.A., Tuchin V.V., Zdrazhevskii R.A. Speckle-correlation analysis of the microcapillary blood circulation in nail bed.Quantum Electronics, 2011, vol. 41, no. 4, pp. 324–328. doi: 10.1070/QE2011v041n04ABEH014603
8.     Roustit M.,Millet C.,Blaise S.,Dufournet B.,Cracowski J.L. Excellent reproducibility of laser speckle contrast imaging to assess skin microvascular reactivity. Microvascular Research, 2010, vol. 80, no.3, pp. 505–511. doi: 10.1016/j.mvr.2010.05.012
9.     Zimnyakov D.A., Kuznetsova L.V., Sviridov A.P., Baranov S.A., Ignateva N.Yu., Lunin V.V. An analysis of the kinetics of the thermal modification of biotissues by speckle correlometry method. Russian Journal of Physical Chemistry A, 2007, vol. 81, no. 4, pp. 626–631. doi: 10.1134/S0036024407040218
10.Zimnyakov D.A., Sadovoi A.V., Vilenskii M.A., Zakharov P.V., Myllylä R. Critical behavior of phase interfaces in porous media: analysis of scaling properties with the use of noncoherent and coherent light. Journal of Experimental and Theoretical Physics, vol. 108, no. 2, pp. 311–325. doi: 10.1134/S1063776109020149
11.BoasD.A., Yodh A.G.Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation. Journal of Optical Society of America A: Optics and Image Science, and Vision,1997, vol. 14, no. 1, pp. 192–215.
12.Lemieux P.-A., Vera M.U., Durian D.J. Diffusing-light spectroscopies beyond the diffusion limit: the role of ballistic transport and anisotropic scattering. Physical Review E, 1998, vol. 57, no. 4, pp. 4498–4515.
13.Zimnyakov D.A., Isaeva A.A., Isaeva E.A., Ushakova O.V., Zdrazhevskii R.A. Specklecorrelometry method for evaluating the transport scattering coefficient of a randomly inhomogeneous medium. Technical Physics Letters, 2012, vol. 38, no. 10, pp. 935–937. doi: 10.1134/S1063785012100288
14.Wang L., Jacques S.L., Zheng L. MCML-Monte Carlo modeling of light transport in multi-layered tissues. Computer Methods and Programs in Biomedicine, 1995, vol. 47, no. 2, pp. 131–146.
15.Vorob'eva E.A., Gurov I.P. Modeli rasprostraneniya i rasseyaniya opticheskogo izlucheniya v sluchaino-neodnorodnykh sredakh [Models of propagation and scattering of optical radiation in randomly inhomogeneous media]. In Problemy Kogerentnoi i Nelineinoi Optiki [Problems of Coherence and Nonlinear Optics] / Eds. I.P. Gurov, S.A. Kozlov. St. Petersburg, SPbGITMO (TU) Publ., 2006, pp. 82–98.
16.Kuzmin V.L.,Meglinski I.V. Coherent multiple scattering effects and Monte Carlo method. JETP Letters, 2004, vol. 79, no. 3, pp. 109–112. doi: 10.1134/1.1719124
17.Berrocal E., Sedarsky D.L., Paciaroni M.E., Meglinski I.V., Linne M.A. Laser light scattering in turbid media Part I: Experimental and simulated results for the spatial intensity distribution. Optics Express, 2007, vol. 15, no. 17, pp. 10649–10665. doi:10.1364/OE.15.010649
18.Feng S., Zeng F.-A., Chance B. Photon migration in the presence of a single defect: a perturbation analysis. Applied Optics, 1995, vol. 34, no. 19, pp. 3826–3837. doi: 10.1364/AO.34.003826
19.Isaeva A.A., Zimnyakov D.A. Full-field speckle analysis of spatially heterogeneous scatterdynamics with the improved depth resolution in stratified random media. Proc. of SPIE, 2011, vol. 8338, art. 83380Y1. doi: 10.1117/12.920067

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2021 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.