SPECTRAL-LUMINESCENT CHARACTERISTICS OF FLUOROPHOSPHATE GLASSES ACTIVATED WITH MANGANESE AND CADMIUM SULPHIDE QUANTUM DOTS

Z. O. Lipatova, V. A. Aseev, E. V. Kolobkova


Read the full article  ';
Article in Russian


Abstract
Research and development of phosphors based on quantum dots (QD) is a perspective problem of photonics. The main advantages of fluorophosphate glass with quantum dots are: high absorption coefficient, solid matrix and a broad band luminescence with high quantum efficiency of QD. Manganese ions have an intense band luminescence in the red region of the spectrum. Thus, the addition of manganese ions in the glass with quantum dots leads to a broadening of the spectrum in the long wavelength region. Such emission is closer to natural sunlight and has a high color rendering index. The work objective is the study of the spectral and luminescent properties of fluorophosphate glasses doped with manganese and CdS quantum dots. Fluorophosphate glasses (47NaPO3-30H3PO4-10Ga2O3-5ZnO-xMnS-7,5NaALF6-4,2CdS, where x = 3, 6, 8 mol. %) were synthesized. The secondary heat treatment at the temperature of 430 ° C for 90 minutes has led to the growth of quantum dots in glass volume. Absorption spectra have been measured in the visible range (from 300 to 600 nm). Heat treatment has led to a shift of the fundamental absorption edge in the visible region of the spectrum. This change is due to the growth of quantum dots. Maximum intensity of luminescence is shifted to the red region of the spectrum from 620 nm to 660 nm under laser excitation at 410 nm. The maximum shift was observed in the glass with a concentration of 3 mol. % of manganese, the minimum one - in the glass with a concentration of 8 mol. %. Values of manganese ions lifetime from18 ms for a sample with a concentration of MnS 3 mol. % to15 ms for MnS 8 mol % were obtained. The decrease in the lifetime with concentration increasing of manganese ions is due to the concentration quenching of the luminescence. The growth of CdS quantum dots in the heat treatment leads to a decrease of the lifetimes to the values below 9-3 ms (3 and 8 - mol. % MnS, respectively). Obtained findings prove that fluorophosphate glasses doped with manganese and CdS quantum dots are perspective materials for phosphors in white LEDs.

Keywords: quantum dots, fluorophosphate glasses, CdS, phosphors

Acknowledgements. This work was financially supported by the Russian Scientific Foundation (Agreement №14-23-00136).

References
1. Ushakova E.V. Osobennosti Evolyutsii FotovozbuzhdeniiKvantovykhTochkakh Khal'kogenidov Kadmiya
Svintsa. Avtoref. kand. fiz.-mat. nauk[Features of Evolution Photoexcitation in Quantum Dots of Cadmium Chalcogenides and Lead. PhD Phys.-Math. Sci. Theses]. St. Petersburg, NRU ITMO, 2012, 24 p.
2.     Vasil'ev R.B., Dirin D.N. Kvantovye Tochki: Sintez, Svoistva, Primenenie [Quantum Dots: Synthesis, Properties and Application]. Moscow, FNM Publ., 2007, 34 p.
3.     Pak V., Levkin A. Opticheskie svoistva nanochastits sul'fidov tsinka i kadmiya v silikagele [Optical properties of zinc and cadmium sulphides nanoparticles in silica]. Izvestia: Herzen University Journal of Humanities & Sciences, 2008, no. 64, pp. 74–85.
4.     NovichkovR.M., Vakshtejn M.S., Nodova E.L., Manjashin A.O., Taraskina I.I. Method for Synthesis of Semiconductor Quantum Dots. Patent, RU 2381304, 2010.
5.     Prints A.V., Prints V.J. Method for Producting Quantum Structures: Quantum Wires, Quantum Dots, Components of Quantum Devices. Patent, RU 2278815, 2006.
6.     Vitukhnovskij A.G., Vashchenko A.A., Lebedev V.S., Vasil'ev R.B. Quantum Dot Organic Light-Emitting Diode. Patent, RU 2506667, 2014.
7.     Agafonova D.S., Kolobkova E.V., Sidorov A.I. Luminescent optical fibers with CdS(Se) quantum dots for spark detectors. Technical Physics Letters, 2012, vol. 38, no. 11, pp. 1034–1036. doi: 10.1134/S1063785012110168
8.     Kolobkova E.V., Nikonorov N.V., Aseev V.A. Vliyanie serebra na rost kvantovykh tochek vo ftorofosfatnykh steklakh [Optical technologies silver nanoclusters influence on formation of quantum dots in fluorine phosphate glasses]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics,2012, no. 5 (81), pp. 1–5.
9.     Rempel S.V., Uglinskikh M.Yu., Vorokh A.S. Tekhnologiya stekla, soderzhashchego nanochastitsy sul'fida kadmiya [The technology of glass containing cadmium sulfide nanoparticles]. Issledovano v Rossii, 2010, no. 79, pp. 930–933.
10.Borelly N.F., Smith D.W. Quantum confinement of PbS microcrystals in glass. Journal of Non-Crystalline Solids, 1994, vol. 180, no. 1, pp. 25–31.
11.Oleinikov V.A. Kvantovye tochki v biologii i meditsine [Quantum dots in biology and medicine]. Priroda, 2010, no. 3, pp. 22–28.
12.Vorobjev I.A., Rafalovskaya-Orlovskaya E.P., Gladkih A.A., Potashnikova D.M., Barteneva N.S. Applications of fluorescent semiconductor nanocrystals in microscopy and cytometry. Tsitologiya, 2011, vol. 53, no. 5, pp. 392–403.
13.Aseev V.A., Kolobkova E.V., Nekrasova Ya.A., Nikonorov N.V., Rokhmin A.S. Lyuminestsentsiya margantsa vo ftorfosfatnykh steklakh [Manganese luminescence in fluorine-phosphate glasses]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics,2012, no. 6 (82), pp. 36–39.
14.Reisfeld R., Kisilev A., Jorgensen C.K. Luminescence of manganese (II) in 24 phosphate glasses. Chemical Physics Letters, 1984, vol. 111, no. 1–2, pp. 19–24.
15.Shamshurin A.V., Maskalyuk L.G., Repin A.V. Lyuminofory na osnove tverdykh rastvorov fosfatov tsinka i magniya, aktivirovannye ionami margantsa [Phosphors based on solid solutions of zinc and magnesium phosphate, doped with manganese]. Trudy Odesskogo Politekhnicheskogo Instituta, 1999, no. 3, pp. 230–232.


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2021 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика