G. A. Kukharev, Y. N. Matveev, N. L. Shchegoleva

Read the full article 
Article in Russian

We discuss the problem of people retrieval by means of composite pictures constructed according to descriptive portrait. An overview of the problem state-of-the-art is provided beginning from the basic concepts and terminology to a modern technology for composite picture creation, real-world scenarios and search results. The development history of systems for forming composite portraits (photo robots and sketches) and the ideas implemented in these systems are provided. The problem of automatic comparison of composite pictures with the original ones is discussed, and the reasons for unattainability of stable retrieval of originals by a composite picture in real-world scenarios are revealed. Requirements to composite pictures databases in addition to the existing benchmark databases of facial images and also methods for implementation of such databases are formulated. Approaches for generation of sketches population from an initial one that increase effectiveness of identikit-based photo image retrieval systems are proposed. The method of similarity index increasing in the couple identikit-photograph based on computation of an average identikit from the created population is provided. It is shown that such composite pictures are more similar to original portraits and their use in the discussed search problem can lead to good results. Thus the created identikits meet the requirements of the truthful scenario as take into account the possibility of incomplete information in descriptions. Results of experiments on CUHK Face Sketch and CUHK Face Sketch FERET databases and also open access identikits and corresponding photos are discussed.

Keywords: face images, composite picture, sketch

Acknowledgements. The work is partially financially supported by the Government of the Russian Federation (grant 074- U01).

 1.     Uhl R.J. Jr., Lobo N.V. A framework for recognizing a facial image from a police sketch. Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, USA, 1996, pp. 586–593. doi: 10.1109/CVPR.1996.517132
2.     Konen W. Comparing facial line drawings with gray-level images: a case study on PHANTOMAS.Lecture Notes in Computer Science,1996, vol. 1112 LNCS, pp. 727–734. doi: 10.1007/3-540-61510-5_123
3.     Kriminalistika[Criminalistics]. 3rd ed. Ed. N.P. Yablokov. Moscow, Yurist" Publ., 2005, 781 p.
4.     Azbuka Kriminalistiki [ABC of Criminology]. Available at: (accessed 11.08.2014).
5.     Identi-Kit Solutions. Available: (accessed 11.08.2014).
6.     IQ Biometrics. Faces Software. Available at: (accessed 11.08.2014).
7.     Yuen P.C., Man C.H. Human face image searching system using sketch. IEEE Transactions on Systems, Man, and Cybernetics Part A: Systems and Humans, 2007, vol. 37, no. 4, pp. 493–504. doi: 10.1109/TSMCA.2007.897588
8.     Tang X., Wang X. Face photo-sketch synthesis and recognition. Proc. 9th IEEE International Conference on Computer Vision. Nice, France, 2003, vol. 1, pp. 687–694.
9.     Wang X., Tang X. Face photo-sketch synthesis and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, vol. 31, no. 11, pp. 1955–1967. doi: 10.1109/TPAMI.2008.222
10.Klare B., Li Z, Jain A.K. Matching forensic sketches to mug shot photos. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, vol. 33, no. 3, pp. 639–646. doi:10.1109/TPAMI.2010.180
11.Han H., Klare B.F., Bonnen K., Jain A.K. Matching composite sketches to face photos: a component-based approach. IEEE Transactions on Information Forensics and Security, 2013, vol. 8, no. 3, pp. 191–204. doi: 10.1109/TIFS.2012.2228856
12.Davies G.M., Valentine T. Facial composites: forensic utility and psychological research. In Handbook of Eyewitness Psychology. Mahwah, LEA, 2007, vol. 2, pp. 59–83.
13.Gibson S.J, Solomon C.J, Pallares-Bejarano A. Synthesis of photographic quality facial composites using evolutionary algorithms.Proc.  British Machine Vision Conference. Norwich, UK, 2003, pp. 221–230.
14.Frowd C.В., Hancock P.J.B., Carson D. EvoFIT: a holistic, evolutionary facial imaging technique for creating composites. ACM Transactions on Applied Psychology, 2004, vol. 1, pp. 1–21.
15.George B., Gibson S.J., Maylin M.I.S., Solomon C.J. EFIT-V - Interactive evolutionary strategy for the construction of photo-realistic facial composites. Proc. 10th Annual Conference on Genetic and Evolutionary Computation. Atlanta, USA, 2008, pp. 1485–1490.
16.Frowd C.D., Pitchford M., Skelton F., Petkovic A., Prosser C., Coates B. Catching even more offenders with EvoFIT facial composites. Proc. 3rd International Conference on Emerging Seurity Technologies, EST-2012. Lisbon, Portugal, 2012, pp. 20–26. doi: 10.1109/EST.2012.26
17.CUHK Face Sketch Database. Available at: (accessed 11.08.2014).
18.CUHK Face Sketch FERET Database. Available at: (accessed 11.08.2014).
19.Zhang W., Wang X., Tang X. Coupled information-theoretic encoding for face photo-sketch recognition. Proc. IEEE Computer SocietyConference on Computer Vision and Pattern Recognition.Colorado Springs, USA, 2011, pp. 513–520. doi: 10.1109/CVPR.2011.5995324
20.Li X., Cao X. A simple framework for face photo-sketch synthesis. Mathematical Problems in Engineering, 2012, vol. 2012, art. 910719. doi: 10.1155/2012/910719
21.Kiani Galoogahi H., Sim T. Face photo retrieval by sketch example. Proc. 20th ACM International Conference Multimedia. Nara, Japan, 2012, pp. 949–952. doi: 10.1145/2393347.2396354
22.Sharma A., JacobsD.W. Bypassing synthesis: PLS for face recognition with pose, low-resolution and sketch. Proc. 24th IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Colorado Springs, USA, 2011, pp. 593–600. doi:10.1109/CVPR.2011.5995350
23.Chang L., Zhou M., Han Y., Deng X. Face sketch synthesis via sparse representation. Proc. 20th International Conference on Pattern Recognition. Istanbul, Turkey, 2010, pp. 2146–2149. doi:10.1109/ICPR.2010.526
24.Kukharev G.A., Buda K., Shchegoleva N.L. Methods of face photo-sketch comparison. Pattern Recognition and Image Analysis, 2014, vol. 24, no. 1, pp. 102–113. doi: 10.1134/S1054661814010076
25.Kukharev G., Buda K., Shchegoleva N. Sketch generation from photo to create test databases. Przegląd Elektrotechniczny (Electrical Review), 2014, vol. 90, no. 2, pp. 97–100. doi: 10.12915/pe.2014.02.26
26.Yu H., Zhang J.J. Mean value coordinates–based caricature and expression synthesis. Signal, Image and Video Processing, 2013, vol. 7, no. 5, pp. 899–910. doi: 10.1007/s11760-011-0279-8
27.Wang Z., Bovik A.C. A universal image quality index. IEEE Signal Processing Letters, 2002, vol. 9, no. 3, pp. 81–84. doi: 10.1109/97.995823
28.Wang Z., Bovik A.C., Sheikh H.R., Simoncelli E.P. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing, 2004, vol. 13, no. 4, pp. 600–612. doi:10.1109/TIP.2003.819861
29.MasoudniaS., Ebrahimpour R. Mixture of experts: a literature survey. Artificial Intelligence Review, 2014, vol. 42, no. 2, pp. 275–293. doi: 10.1007/s10462-012-9338-y

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2019 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.