SUPPORT PROBLEM FOR COGNITIVE FUNCTIONS IN THE E-LEARNING

L. S. Lysitsina, A. V. Lyamin, A. Bystritsky, I. A. Martynikhin


Read the full article 
Article in Russian


Abstract
Successful development of such important human cognitive functions as attention, perception and information processing speed, working and long-term memory, thinking, etc. is a necessary foundation for increasing the effectiveness of e-learning. One way for further developments of students' cognitive functions in the process of e-learning consists in computer cognitive training sessions, which are included in the individual learning paths to promote a learner to the successful implementation of specific learning tasks of e-course. Analysis of the estimating problems for cognitive training effects (severity, stability and transfer) is done and the ways for their solution are proposed. It is shown that the biological basis for cognitive training effects consists in the processes of neuroplasticity of the brain that influence the duration and intensity of training. An approach to the organization of research for the effects of cognitive training, based on the usage of random methods is suggested. The prospects of game mechanics application for cognitive training implementation in elearning are shown. A detailed analysis of the approaches to the training of the basic cognitive functions, including working memory of learners, is carried out. The practical significance of this paper is to identify priorities for research and development of cognitive training in e-learning.

Keywords: e-learning, cognitive training, basic and complex cognitive functions, working memory training, neuroplasticity, assessment of cognitive training effects

References
 1.     Vasiliev V.N., Stafeev S.K., Lisitsyna L.S., Ol'shevskaya A.V. Ot traditsionnogo distantsionnogo obucheniya k massovym otkrytym onlain-kursam [From traditional distance learning to mass online open courses]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2014, no. 1 (89), pp. 199–205.
2.     Lisitsyna L., Lyamin A. Approach to development of effective e-learning courses. Frontiers in Artificial Intelligence and Application, 2014, vol. 262, pp. 732–738. doi: 10.3233/978-1-61499-405-3-732
3.     Lisitsyna L., Lyamin A., Skshidlevsky A.Estimation of student functional state in learning management system by heart rate variability method. Frontiers in Artificial Intelligence and Application, 2014, vol. 262, pp. 726–731. doi: 10.3233/978-1-61499-405-3-726
4.     Clark R.C., Nguyen F., Sweller J. Efficiency in Learning: Evidence-Based Guidelines to Manage Cognitive Load. San Francisco, Pfeiffer, 2006, 416 p.
5.     Vinogradov S., Fisher M., de Villers-Sidani E. Cognitive training for impaired neural systems in neuropsychiatric illness. Neuropsychopharmacology, 2012, vol. 37, no. 1, pp. 43–76. doi:10.1038/npp.2011.251
6.     Shipstead Z., Hicks K., Engle R. Cogmed working memory training: does the evidence support the claims? Journal of Applied Research in Memory and Cognition, 2012, no. 1, pp. 185–193. doi:10.1016/j.jarmac.2012.06.003
7.     Pascual-Leone A., Freitas C., Oberman L., Horvath J.C., Halko M., Eldaief M., Bashir S., Vernet M., Shafi M., Westover B., Vahabzadeh-Hagh A.M., Rotenberg A. Characterizing brain cortical plasticity and network dynamics across the age-span in health and disease with TMS-EEG and TMS-fMRI. Brain Topography, 2011, vol. 24, no. 3–4, pp. 302–315. doi: 10.1007/s10548-011-0196-8
8.     Fisher M., Holland C., Subramaniam K., Vinogradov S. Neuroplasticity-based cognitive training in schizophrenia: an interim report on the effects 6 months later. Schizophrtnia Bulletin, 2010, vol. 36, no. 4, pp. 869–879. doi: 10.1093/schbul/sbn170
9.     Sagi Y., Tavor I., Hofstetter S., Tzur-Moryosef S., Blumenfeld-Katzir T., Assaf Y. Learning in the fast lane: new insights into neuroplasticity. Neuron, 2012, vol. 73, no. 6, pp. 1195–1203. doi:10.1016/j.neuron.2012.01.025
10.Kleim J.A., Pipitone M.A., Czerlanis C., Greenough W.T. Structural stability within the lateral cerebellar nucleus of the rat following complex motor learning. Neurobiology of Learning and Memory, 1998, vol. 69, no. 3, pp. 290–306. doi:10.1006/nlme.1998.3828
11.Ungerleider L.G., Doyon J., Karni A. Imaging brain plasticity during motor skill learning. Neurobiology of Learning and Memory, 2002, vol. 78, no. 3, pp. 553–564. doi:10.1006/nlme.2002.4091
12.Kleim J.A., Hogg T.M., Vandenberg P.M., Cooper N.R., Bruneau R., Remple M. Cortical synaptogenesis and motor map reorganization occur during late, but not early, phase of motor skill learning. Journal of Neuroscience, 2004, vol. 24, no. 3, pp. 628–633. doi:10.1523/JNEUROSCI.3440-03.2004
13.Vinogradov S., Fisher M., Holland C., Shelly W., Wolkowitz O., Mellon S.H. Is serum brain-derived neurotrophic factor a biomarker for cognitive enhancement in schizophrenia? Biological Psychiatry, 2009,vol. 66, no.6, pp. 549–553. doi:10.1016/j.biopsych.2009.02.017
14.Velichkovsky B.M. Kognitivnaya Nauka: Osnovy PsikhologiiPoznaniya[Cognitive Science: Foundations of Epistemic Psychology, vol. 1]. Moscow, Smysl Publ., 2006, 448 p.
15.Melby-Lervag M., Hulme C. Is working memory training effective? A meta-analytic review. Developmental Psychology, 2013, vol. 49, no. 2, pp. 270–291. doi:10.1037/a0028228
16.Vlasov V.V. Vvedenie v Dokazatel'nuyu Meditsinu [Introduction to Evidence Based Medicine]. Moscow, Media-Sfera Publ., 2001, 392 p.
17.Hawthorne Effect. Available at: https://en.wikipedia.org/wiki/Hawthorne_effect (accessed 15.05.2014).
18.Jaeggi S.M., Buschkuehl M., Shah P., Jonides J. The role of individual differences in cognitive training and transfer. Memory and Cognition, 2013, vol. 42, no. 3, pp. 464–480. doi:10.3758/s13421-013-0364-z
19.Sim T., Gentile D.A., Bricolo F., Serpollini G., Gulamoydeen F. A conceptual review of research on the pathological use of computers, video games, and the Internet. International Journal of Mental Health and Addiction, 2012, vol. 10, no. 5, pp. 748–769. doi:10.1007/s11469-011-9369-7
20.Messias E., Castro J., Saini, A. Usman M., Peeples D. Sadness, suicide, and their association with video game and Internet overuse among teens: results from the Youth Risk Behavior Survey 2007 and 2009. Suicide and Life-Threatening Behavior, 2011, vol. 41, no. 3, pp. 307–315. doi: 10.1111/j.1943-278X.2011.00030.x
21.Granic I., Lobel A., Engels R.C.M.E.The benefits of playing video games. American Psychologist, 2014, vol. 69, no. 1, pp. 66–78. doi:10.1037/a0034857
22.Boyle E.A., Connolly T.M., Hainey T. The role of psychology in understanding the impact of computer games. Entertainment Computing, 2011, vol. 2, no. 2, pp. 69–74. doi:10.1016/j.entcom.2010.12.002
23.Connolly T.M., Boyle E.A., MacArthur E., Hainey T., Boyle J.M. A systematic literature review of empirical evidence on computer games and serious games. Computers and Education, 2012, vol. 59, no. 2, pp. 661–686. doi:10.1016/j.compedu.2012.03.004
24.Boot W.R., Blakely D.P., Simons D.J. Do action video games improve perception and cognition? Frontiers in Psychology, 2011, vol. 2, art. 226. doi: 10.3389/fpsyg.2011.00226
25.Peretz C., Korczyn A.D., Shatil E., Aharonson V., Birnboim S., Giladi N. Computer-based, personalized cognitive training versus classical computer games: a randomized double-blind prospective trial of cognitive stimulation. Neuroepidemiology, 2011, vol. 36, no. 2, pp. 91–99. doi: 10.1159/000323950
26.Lisitsina L.S., Pershin A.A., Uskov V.L. K voprosu povysheniya rezul'tativnosti massovogo onlain-kursa [New approaches to efficiency of massive online course]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2014, no. 5 (93), pp. 164–171.
27.Owen A.M., Hampshire A., Grahn J.A., Stenton R., Dajani S., Burns A.S., Howard R.J., Ballard C.G. Putting brain training to the test. Nature, 2010, vol. 465, no. 7299, pp. 775–778. doi:10.1038/nature09042
28.Kelly M.E., Loughrey D., Lawlor B.A., Robertson I.H., Walsh C., Brennan S. The impact of cognitive training and mental stimulation on cognitive and everyday functioning of healthy older adults: a systematic review and meta-analysis. Ageing Research Reviews, 2014, vol. 15, pp. 28–43. doi:10.1016/j.arr.2014.02.004
29.Karch D., Albers L., Renner G., Lichtenauer N., von Kries R. The efficacy of cognitive training programs in children and adolescents – a meta-analysis. Deutsches Arzteblatt International, 2013, vol. 110, no. 39, pp. 643−652. doi:10.3238/arztebl.2013.0643
30.Anguera J.A., Boccanfuso J., Rintoul J.L., Al-Hashimi O., Faraji F., Janowich J., Kong E., Larraburo Y., Rolle C., Johnston E., Gazzaley A. Video game training enhances cognitive control in older adults. Nature, 2013, vol. 501, no. 7465, pp. 97–101. doi: 10.1038/nature12486
31.Rapport M.D, Orban S.A., Kofler M.J., Friedman L.M. Do programs designed to train working memory, other executive functions, and attention benefit children with ADHD? A meta-analytic review of cognitive, academic, and behavioral outcomes. Clinical Psychology Review, 2013, vol. 33, no. 8, pp. 1237–1252. doi:10.1016/j.cpr.2013.08.005
32.Borness C., Proudfoot J., Crawford J., Valenzuela M. Putting brain training to the test in the workplace: a randomized, blinded, multisite, active-controlled trial. PLoS ONE, 2013, vol. 8, no. 3, art. e59982. doi:10.1371/journal.pone.0059982
33.Kueider A.M., Parisi J.M., Gross A.L., Rebok G.W. Computerized cognitive training with older adults: a systematic review. PLoS One, 2012, vol. 7, no. 7, art. e40588. doi: 10.1371/journal.pone.0040588.
34.Unsworth N., Engle R.W. On the division of short-term and working memory: an examination of simple and complex span and their relation to higher order abilities. Psychological Bulletin, 2007, vol. 133, no. 6, pp. 1038–1066. doi: 10.1037/0033-2909.133.6.1038
35.Gathercole S.E., Alloway T.P. Short-term and working memory impairments in neurodevelopmental disorders: diagnosis and remedial support. Journal of Child Psychology and Psychiatry, 2006, vol. 47, no. 1, pp. 4–15. doi:10.1111/j.1469-7610.2005.01446.x
36.Alloway T.P., Alloway R.G. Investigating the predictive roles of working memory and IQ in academic attainment. Journal of Experimental Child Psychology, 2010, vol. 106, no. 1, pp. 20–29. doi:10.1016/j.jecp.2009.11.003
37.Klingberg T. Training and plasticity of working memory. Trends in Cognitive Sciences, 2010, vol. 14, no. 7, pp. 317–324. doi: 10.1016/j.tics.2010.05.002
38.Diamond A., Lee K. Interventions shown to aid executive function development in children 4 to 12 years old. Science, 2011, vol. 333, no. 6045, pp. 959–964. doi: 10.1126/science.1204529
39.Takeuchi H., Sekiguchi A., Taki Y., Yokoyama S., Yomogida Y., Komuro N., Yamanouchi T., Suzuki S., Kawashima R. Training of working memory impacts structural connectivity. Journal of Neuroscience, 2010, vol. 30, no. 9, pp. 3297–3303. doi:10.1523/JNEUROSCI.4611-09.2010
40.Klingberg T., Forssberg H., Westerberg H. Training of working memory in children with ADHD. Journal of Clinical and Experimental Neuropsychology, 2002, vol. 24, no. 6, pp. 781–791. doi: 10.1076/jcen.24.6.781.8395
41.Ralph K. Cogmed Working Memory Training. Pearson. Clinical Assessment. Available at: http://www.pearsonclinical.co.uk/Cogmed/Downloads/cogmed-claims-and-evidence.pdf (accessed 15.05.2014).
42.Jaeggi S.M., Buschkuehl M., Jonides J., Perrig W.J. Improving fluid intelligence with training on working memory. Proc. of the National Academy of Sciences of the United States of America, 2008, vol. 105, no. 19, pp. 6829–6833. doi: 10.1073/pnas.0801268105
43.Kaufman S.B. New Cognitive Training Study Takes on the Critics. Available at: http://blogs.scientificamerican.com/beautiful-minds/2013/10/09/new-cognitive-training-study-takes-on-the-critics/ (accessed 15.05.2014).


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2019 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика