doi: 10.17586/2226-1494-2015-15-5-782-788


RESEARCH OF LINEAR AND NONLINEAR PROCESSES AT FEMTOSECOND LASER RADIATION PROPAGATION IN THE MEDIUM SIMULATING THE HUMAN EYE VITREOUS

P. Y. Rogov, M. A. Knyazev, V. G. Bespalov


Read the full article  ';
Article in Russian

For citation: Rogov P.Yu., Knyazev M.A., Bespalov V.G. Research of linear and nonlinear processes at femtosecond laser radiation propagation in the medium simulating the human eye vitreous. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2015, vol. 15, no. 5, pp. 782–788

Abstract

The paper deals with mathematical model of linear and nonlinear processes occurring at the propagation of femtosecond laser pulses in the vitreous of the human eye. Methods of computing modeling are applied for the nonlinear spectral equation solution describing the dynamics of a two-dimensional TE-polarized radiation in a homogeneous isotropic medium with cubic fast-response nonlinearity without the u retina when passing through the vitreous body of the eye. Dependence between the pulse duration on the retina has been revealed and the duration of the input pulse and the values of power density at which there is self-focusing have been found. It is shown that the main mechanism of radiation damage with the use of titanium-sapphire laser is photoionization. The results coincide with those obtained by the other scientists, and are usable for creation Russian laser safety standards for femtosecond laser systems.sage of slowly varying envelope approximation. Environments close to the optical media parameters of the eye were used for the simulation. The model of femtosecond radiation propagation takes into account the process dynamics for dispersion broadening of pulses in time and the occurence of the self-focusing near the 


Keywords: laser safety, femtosecond radiation, self-focusing, dispersion spreading, vitreous humor

Acknowledgements. Results of this work were obtained within the framework of the state order No.1675.2014/K of the Ministry of Education and Science of the Russian Federation.

References
1. Kozlov S.A., Samartsev V.V. Osnovy Femtosekundnoi Optiki [Basics of Femtosecond Optics]. Moscow, Fizmatlit Publ., 2009, 292 p.
2. Femtosecond Laser Pulses: Principles and Experiments. Ed. C. Rulliere. 2nd ed. Springer, 2005, 428 p.
3. Sati P., Verma U., Tripathi V.K. Self-focusing and frequency broadening of laser pulse in water. Physics of Plasmas, 2014, vol. 21, no. 11, art. 112110. doi: 10.1063/1.4901952
4. Freitas C., Moreno-Perdomo N., Gentil R., Baptista A.M.G., Macedo A.F. Functional impairment with minimal macular damage in femtosecond laser plasma injury: case report. Arquivos Brasileiros de Oftalmologia, 2013, vol. 76, no. 5, pp. 317–319.
5. Schumacher S., Sander M., Stolte A. Doepke C., Baumgaertner W., Lubatschowski H. Investigation of possible fs-LASIK induced retinal damage. Proc. Ophthalmic Technologies XVI. San Jose, USA, 2006, art. 61381I. doi: 10.1117/12.645147
6. Sander M., Minet O., Zabarylo U., Muller M., Tetz M.R. Comparison of retina damage thresholds simulating the femtosecond-laser in situ keratomileusis (fs-LASIK) process with two laser systems in the CW-and fs-regime. Laser Physics, 2012, vol. 22, no. 4, pp. 805–812. doi: 10.1134/S1054660X12040172
7. Cain C.P., Thomas R.J., Noojin G.D., Stolarski D.J., Kennedy P.K., Buffington G.D., Rockwell B.A. Sub- 50-fs laser retinal damage thresholds in primate eyes with group velocity dispersion, self-focusing and lowdensity plasmas. Graefe's Archive for Clinical Experimental Ophthalmology, 2005, vol. 243, no. 2, pp. 101–112. doi: 10.1007/s00417-004-0924-9
8. Artal P. Optics of the eye and its impact in vision: a tutorial. Advances in Optics and Photonics, 2014, vol. 6, no. 3, pp. 340–367. doi: 10.1364/AOP.6.000340
9. Whikehart D.R. Biochemistry of the Eye. Butterworth-Heinemann, 2004, 512 p.
10. Wang J., Sramek C., Paulus Y.M., Lavinsky D., Schuele G., Anderson D., Dewey D., Palanker D. Retinal safety of near-infrared lasers in cataract surgery. Journal of Biomedical Optics, 2012, vol. 17, no. 9, art. 095001.
11. Hansen A., Geneaux R., Gunther A., Kruger A., Ripken T. Lowered threshold energy for femtosecond laser induced optical breakdown in a water based eye model by aberration correction with adaptive optics. Biomedical Optics Express, 2013, vol. 4, no. 6, pp. 852–867. doi: 10.1364/BOE.4.000852
12. Shpolyanskii Yu.A. Spektral'no-vremennaya evolyutsiya predel'no korotkikh impul'sov sveta v prozrachnykh sredakh i opticheskikh volnovodakh s dispersiei i kubicheskoi nelineinost'yu: dis. … dokt. fiz.-mat. nauk [Spectral and temporal evolution of extremely short light pulses in transparent media and optical waveguides with dispersion and cubic nonlinearity. Dis. dr. Phys.-Math. Sci.]. St. Petersburg, 2010, 246 p.
13. Daimon M., Masumura A. Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region. Applied Optics, 2007, vol. 46, no. 18, pp. 3811–3820. doi: 10.1364/AO.46.003811
14. Mak A.A., Soms L.N., Fromzel' V.A., Yashin V.E. Lazery na Neodimovom Stekle [Neodymium-glass laser]. Moscow, Nauka Publ., 1990, 288 p.
15. Libenson M.N., Yakovlev E.B., Shandybina G.D. Interaction of Laser Light with Matter (Power Optics). Lecture Notes. Part I. The Absorption of Laser Radiation in Matter / Ed. V.P. Veiko. St. Petersburg, SPbSU ITMO, 2008, 141 p. (In Russian)
16. Manenkov A.A. Fundamental mechanisms of laser-induced damage in optical materials: today’s state of understanding and problems. Optical Engineering, 2014, vol. 53, no. 1, art. 131013V. doi: 10.1117/1.OE.53.1.010901
17. Chimier B., Uteza O., Sanner N., Sentis M., Itina T., Lassonfe P., Legare F., Vidal F., Kieffer J.C. Damage and ablation thresholds of fused-silica in femtosecond regime. Physical Review B – Condensed Matter and Materials Physics, 2011, vol. 84, no. 9, art. 094104. doi: 10.1103/PhysRevB.84.094104
18. Docchio F., Sacchi C.A., Marshall J. Experimental investigation of optical breakdown thresholds in ocular media under single pulse irradiation with different pulse durations. Lasers Ophthalmology, 1986, vol. 1, pp. 83–93.
19. Ezerskaya A.A., Ivanov D.V., Kozlov S.A., Kivshar Y.S. Spectral approach in the analysis of pulsed terahertz radiation. Journal of Infrared, Millimeter, and Terahertz Waves, 2012, vol. 33, no. 9, pp. 926–942. doi: 10.1007/s10762-012-9907-9
20. Pal'tsev Yu.P. Effekty vozdeistviya lazernogo izlucheniya [Effects of laser light exposure]. In: Vozdeistvie na Organizm Cheloveka Opasnykh i Vrednykh Proizvodstvennykh Faktorov. Mediko-Biologicheskie i Metrologicheskie Aspekty [The Impact Dangerous and Harmful Factors on Human. Biomedical and Metrological Aspects]. V. 1. Moscow, Standards Publ., 2004, pp. 170–189.


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика