doi: 10.17586/2226-1494-2015-15-6-1177-1180


N. A. Zulina, I. Y. Denisyuk, T. V. Timofeeva

Read the full article  ';
Article in Russian

For citation: Zulina N.A., Denisyuk I.Yu., Timofeeva T.V. Synthesis of 2,6-diaminopyridine-4-nitrophenol (2,6DAP4N) cocrystal nanoparti-cles by laser ablation method. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2015, vol. 15, no. 6, pp. 1177–1180.


We propose findings for laser ablation of organic materials in liquids as one of the perspective methods of nanoparticles synthesis on their basis. We describe nanoparticles synthesis for 2,6-diaminopyridine-4-nitrophenol (2,6DAP4N) cocrystal by the method of material laser ablation at nanoparticles condensation in liquid (dodecane and polyphenyleneoxide). Laser radiation with wavelength equal to 355 nm, pulse duration - 10 ns, pulse repetition rate - 3.8 kHz, and pulse power density equal to 170 kW/cm2 has been used in the study. Nanoparticles in the form of colloids have been obtained and studied by visible range spectroscopy and optical microscopy.  Obtained particles size is around 0.5 μm. 

Keywords: laser ablation, molecular crystal, organic nanocrystal.


1. Ruiz B., Jazbinsek M., Gunter P. Crystal growth of DAST. Crystal Growth and Design, 2008, vol. 8, no. 11, pp. 4173–4184. doi: 10.1021/cg8003432
2. Kassavetis S., Kaziannis S., Pliatsikas N., Avgeropoulos A., Karantzalis A.E., Kosmidis C., Lidorikis E., Patsalas P. Formation of plasmonic colloidal silver for flexible and printed electronics using laser ablation. Applied Surface Science, 2005, vol. 336, pp. 262–266. doi: 10.1016/j.apsusc.2014.11.171
3. Bagga K., McCann R., Wang M., Stalcup A., Vázquez M., Brabazon D. Laser assisted synthesis of carbon nanoparticles with controlled viscosities for printing applications. Journal of Colloid and Interface Science, 2015, vol. 447, pp. 263–268. doi: 10.1016/j.jcis.2014.10.046
4. Tamaki Yo., Asahi Ts., Masuhara H. Nanoparticle formation of vanadyl phthalocyanine by laser ablation of its crystalline powder in a poor solvent. Journal of Physical Chemistry A, 2002, vol. 106, no. 10, pp. 2135–2139. doi: 10.1021/jp012518a
5. Li B., Kawakami T., Hiramatsu M. Enhancement of organic nanoparticle preparation by laser ablation in aqueous solution using surfactants. Applied Surface Science, 2003, vol. 210, no. 3–4, pp. 171–176. doi: 10.1016/S0169-4332(03)00009-6
6. Elaboudi I., Lazare S., Belin C., Bruneel J.L., Servant L. Organic nanoparticles suspensions preparation by underwater excimer laser ablation of polycarbonate. Applied Surface Science, 2007, vol. 253, no. 19, pp. 7835–7839. doi: 10.1016/j.apsusc.2007.02.167
7. Barcikowski S., Hustedt M., Chichkov B. Nanocomposite manufacturing using ultrashort-pulsed laser ablation in solvents and monomers. Polimery, 2008, vol. 53, no. 9, pp. 657–662.
8. Pavlovetc I.M., Draguta S., Fokina M.I., Timofeeva T.V., Denisyuk I.Yu. Synthesis, crystal growth, thermal and spectroscopic studies of acentric materials constructed from aminopyridines and 4-nitrophenol. Optics Communications, 2015. doi: 10.1016/j.optcom.2015.05.034

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.