**Nikiforov**

Vladimir O.

D.Sc., Prof.

Vladimir O.

D.Sc., Prof.

doi: 10.17586/2226-1494-2016-16-3-533-540

doi: 10.17586/2226-1494-2016-16-3-533-540

# EVALUATION OF ERRORS IN PARAMETERS DETERMINATION FOR THE EARTH HIGHLY ANOMALOUS GRAVITY FIELD

**Read the full article**';

**Article in**Russian

**For citation:**Staroseltsev L.P., Yashnikova O.M. Evaluation of errors in parameters determination for the Earth highly anomalous gravity field.

*Scientific and Technical Journal of Information Technologies, Mechanics and Optics*, 2016, vol. 16, no. 3, pp. 533–540. doi: 10.17586/2226-1494-2016-16-3-533-540

**Abstract**

**Subject of Research.**The paper presents research results and the simulation of errors caused by determining the Earth gravity field parameters for regions with high segmentation of gravity field. The Kalman filtering estimation of determining errors is shown. **Method.** Simulation model for the realization of inertial geodetic method for determining the Earth gravity field parameters is proposed. The model is based on high-precision inertial navigation system (INS) at the free gyro and high-accuracy satellite system. The possibility of finding the conformity between the determined and stochastic approaches in gravity potential modeling is shown with the example of a point-mass model. **Main Results.** Computer simulation shows that for determining the Earth gravity field parameters gyro error model can be reduced to two significant indexes, one for each gyro. It is also shown that for regions with high segmentation of gravity field point-mass model can be used. This model is a superposition of attractive and repulsive masses - the so-called gravitational dipole. **Practical Relevance.** The reduction of gyro error model can reduce the dimension of the Kalman filter used in the integrated system, which decreases the computation time and increases the visibility of the state vector. Finding the conformity between the determined and stochastic approaches allows the application of determined and statistical terminology. Also it helps to create a simulation model for regions with high segmentation of gravity field.

**Keywords:**Earth gravitational field parameters, inertial geodetic method, gravity field model

**Acknowledgements.**This work was supported by the Russian Science Foundation, project No. 14-29-00160

**References**

1. Ogorodova L.V. Vysshaya Geodeziya. Chast' III. Teoreticheskaya Ggeodeziya [Higher Geodesy. Part III. Theoretical Geodesy]. Moscow, Geodezkartizdat Publ., 2006, 384 p.

2. Peshekhonov V.G. Sudovye Sredstva Izmereniya Parametrov Gravitatsionnogo Polya Zemli [Ship Measuring Instruments of Earth's Gravity Field Parameters]. Leningrad, TsNII Rumb, 1989, 90 p.

3. Anuchin O.N. Inertsial'nye Metody Opredeleniya Parametrov Gravitatsionnogo Polya Zemli na More: Dis. Dokt. Tekhn. Nauk [Inertial Methods for Determining the Earth's Gravitational Field Parameters of the Sea. Dissertation of Dr. Eng. Sci.]. St. Petersburg, 1992, 425 p.

4. Karpik A.P., Kanushin V.F., Ganagina I.G., Goldobin D.N., Mazurova E.M. Studies of spectral characteristics of CHAMP, GRAСE, and GOCE global gravity field models.* Gyroscopy and Navigation*, 2014, vol. 5, no. 4, pp. 34–44.

5. Dmitriev S.P. Vysokotochnaya Morskaya Navigatsiya [High-Precision Marine Navigation]. St. Petersburg, Sudostroenie Publ., 1991, 224 p.

6. Emel’yantsev G.I., Stepanov A.P., Blazhnov B.A., Semenov I.V. Improving the accuracy of GPS compass for small-sized objects. *Gyroscopy and Navigation*, 2015, vol. 6, no. 3, pp. 166–171. doi: 10.1134/S2075108715030050

7. Nesenyuk L.P., Starosel'tsev L.P., Brovko L.N. Definition of plumb lines using inertial navigation systems.* Voprosy Korablestroeniy*a, 1980, no. 46, pp. 16–22.

8. Peshekhonov V.G. Gyroscopic systems: current status and prospects. *Gyroscopy and Navigation*, 2011, vol. 2, no.3, pp. 111-118. doi: 10.1134/S2075108711030096

9. Peshekhonov V.G., Vasiljev V.A., Zinenko V.M. Measuring vertical deflection in ocean combining GPS, INS and star trackers. *Proc. 3rd Int. Workshop on High Precision Navigation*. Stuttgart, Germany, 1995. P. 180–185.

10. Gusinskii V.Z., Lesyuchevskii V.M., Litmanovich Yu.A. Exhibition and calibration of the inertial navigation system with a multi-dimensional model of the inertial errors meters. *Proc. 4th Int. Conf. on Integrated Navigation Systems.* St. Petersburg, 1997, pp. 27–40. (In Russian)

11. Gusinskii V.Z., Lesyuchevskii V.M., Litmanovich Yu.A., Peshekhonov V.G., Shmidt G.T. The use of information redundancy in inertial navigation systems on free gyroscopes. *Proc. 3rd Int. Conf. on Integrated Navigation Systems. *St. Petersburg, 1996, pp. 12–19. (In Russian)

12. Taranovskii D.O., Lesyuchevskii V.M. Stages of development of the optimal filter for alignment and calibration of the inertial navigation system on unmanaged gyroscopes. *Proc. V Conference of Yang Scientists on Navigation and Traffic Control.* St. Petersburg, 2004. (In Russian)

13. Martynenko Yu.G. Dvizhenie Tverdogo Tela v Elektricheskikh i Magnitnykh Polyakh [Solid Body Motion in Electric and Magnetic Fields]. Moscow, Nauka Publ., 1988, 368 p.

14. Stepanov O.A., Koshaev D.A. Universal MATLAB programs for investigating a potential accuracy and sensitivity of linear nonstationary filtering algorithms. *Gyroscopy and Navigation*, 2004, no. 2(45), pp. 81–93.

15. Moritz H. Advanced Physical Geodesy. Herbert Wichmann Verlag, Karlsruhe, 1980, 512 p.

16. Koneshov V.N., Nepoklonov V.B., Sermiagin R.A., Lidovskaya E.A. Modern global models of the Earth gravity field and their errors. *Gyroscopy and Navigation,* 2013, no. 1, pp. 107–118.

17. Nepoklonov V.B. On the use of new models of the Earth's gravitational field in automation technology research and design. *Avtomatizirovannye Tekhnologii Izyskanii i Proektirovaniya*, 2009, no. 2,3. (In Russian)

18. Yashnikova O.M. Isoline maps creation of the Earth anomalous gravity field by point masses method. *Scientific and Technical Journal of Information Technologies, Mechanics and Optics*, 2011, no. 5, pp. 35–39.