doi: 10.17586/2226-1494-2016-16-4-593-607


A. S. Aleynik, N. E. Kikilich, V. N. Kozlov, A. A. Vlasov, A. N. Nikitenko

Read the full article  ';
Article in Russian

For citation: Aleynik A.S., Kikilich N.E., Kozlov V.N., Vlasov A.A., Nikitenko A.N. High-stable Erbium superluminescent fiber optical sources creation methods. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2016, vol. 16, no. 4, pp. 593–607. doi: 10.17586/2226-1494-2016-16-4-593-607


We present the overview of wideband Erbium doped superluminescent fiber sources (EDSFS) creation methods. This type of optical sources is mainly used in navigation accuracy class fiber-optical gyroscopes (FOG) production. For this application an optical source should have small coherence length to reduce FOG output signal error rate. Output signal errors are caused by different parasitic effects: reverse Rayleigh scattering, optical components mode swapping, Kerr effect. Consequently, the most important characteristics of EDSFS are central wavelength time and wide temperature range stability and optical spectrum width and shape. The spectrum shape is needed to be close to the Gaussian distribution to minimize time coherence function. The paper deals with major EDSFS instability reasons and their most effective spectral parameters stabilization and optimization methods. We consider various methods of output optical radiation spectrum correction, and problems connected with output radiation residual polarization, the EDSFS principle of operation, structure and their basic construction schemes, the overview of Erbium-doped active fibers for EDSFS creation. The conclusions on most effective output optical radiation stabilization methods are drawn.

Keywords: Erbium doped source, superluminescent source, central wavelength stabilization, optical power stabilization, temperature relation, optical spectrum stabilization, optical fiber alloying, coherence function, optical source stabilization, depolarized light

Acknowledgements. This work was financially supported by the Ministry of Education and Science of the Russian Federation (agreement No 14.578.21.0109 dated 27.10.2015)


1. Lefevre H.C. The Fiber-Optic Gyroscope. London, Artech House, 1993, 332 p.
2. Lefevre H.C. The fiber-optic gyroscope: challenges to become the ultimate rotation-sensing technology. Optical Fiber Technology, 2013, vol. 19, no. 6, pp. 828–832. doi: 10.1016/j.yofte.2013.08.007
3. Wysocki P.F., Digonnet M.J.F., Kim B.Y., Shaw H.J. Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications. Journal of Lightwave Technology, 1994, vol. 12, no. 3, pp. 550–567. doi: 10.1109/50.285318
4. Hao Y., Wang R., Li X. Research on fiber amplify sources with double direction pump for fiber optical gyroscopes. International Workshop on Intelligent Systems and Applications. Wuhan, China, 2009, art. 5073070. doi: 10.1109/IWISA.2009.5073070
5. Becker P.C., Olsson N.A., Simpson J.R. Erbium-Doped Fiber Amplifiers: Fundamentals and Technology. Academic Press, 1999, 460 p.
6. Urquhart P. Review of rare earth doped fiber lasers and amplifiers. IEE Proceedings. Part J. Optoelectronics, 1988, vol. 135, no. 6, pp. 385–407.
7. Rare-Earth-Doped Fiber Lasers and Amplifiers, Revised and Expanded. Ed. M.J.F. Digonnet. NY-Basel, Marcel Dekker Inc., 2001, 798 p.
8. Naji A.W., Hamida B.A., Cheng X.S., Mahdi M.A., Harun S., Khan S., Al-Khateeb W.F., Zaidan A.A., Zaidan B.B., Ahmad H. Review of Erbium-doped fiber amplifier. International Journal of the Physical Sciences, 2011, vol. 6, no. 20, pp. 4674–4689.
9. Kurkov A.S., Dianov E.M. Moderate-power cw fibre lasers. Quantum Electronics, 2004, vol. 34, no. 10, pp. 881–900.
10. Wysocki P.F., Digonnet M.J.F., Kim B.Y. Wavelength stability of a high-output, broadband, Er-doped superfluorescent fiber source pumped near 980 nm. Optics Letters, 1991, vol. 16, no. 12, pp. 961– 963. doi: 10.1364/OL.16.000961
11. Dianov E.M., Karpov V.I., Kurkov A.S., Protopopov V.N. Methods for flattening the gain spectrum of erbium fibre amplifiers. Soviet Journal of Quantum Electronics, 1996, vol. 26, no. 12, pp. 1029–1034.
12. Kurkov A.S., Nanii O.E. Erbium fiber optical amplifiers. Lightwave Russian Edition, 2003, vol. 1, pp. 14–19.
13. Pavlath G.A. Fiber optic gyros past, present, and future. Proc. SPIE, 2012, vol. 8421, art. 842102. doi: 10.1117/12.966855
14. Sharkov I.A., Rupasov A.V., Strigalev V.E., Volkovskii S.A. Thermal instability influence of the radiation source characteristics on the signal of fiber-optic gyroscope. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2013, no.6, pp. 31–35.
15. Park H.G., Digonnet M. Er-doped superfluorescent fiber source with a 0.5-ppm long-term mean-wavelength stability. Journal of Lightwave Technology, 2003, vol. 21, no. 12, pp. 3427–3433. doi: 10.1109/JLT.2003.822539
16. Park H.G., Digonnet M.J.F., Kino G.S. Er-doped Superfluorescent Fiber Source with Enhanced Mean Wavelength Stability. Patent US7269190, 2007.
17. Park T.-S., Choi D.-I., Oh Y.-J. Gain Control Device and Method for Erbium Doped Fiber Amplifier. Patent US6762878, 2004.
18. Fidric B.C., Michal R.J., Steele J.R., Goldner E.L., Patterson R.A. Optical Fiber Amplifier Eled Light Source With a Relative Intensity Noise Reduction System. Patent US5761225, 1998.
19. Wan H., Zhang D., Sun X. Stabilization of a superfluorescent fiber source with high performance erbium doped fibers. Optical Fiber Technology, 2013, vol. 1, no. 3, pp. 264–268. doi: 10.1016/j.yofte.2013.02.006
20. Zatta P.Z., Hall D.C. Ultra-high-stability two-stage superfluorescent fibre sources for fibre optic gyroscopes. Electronics Letters, 2002, vol. 38, no. 9, pp. 406–408. doi: 10.1049/el:20020278
21. Hall D.C., Burns W.K., Moeller R.P. High-stability Er3+-doped superfluorescent fiber sources. Journal of Lightwave Technology, 1995, vol. 13, no. 7, pp. 1452–1460. doi: 10.1109/50.400711
22. Hall D.C., Burns W.K. Wavelength stability optimization in Er3+-doped superfluorescent fiber sources. Electronics Letters, 1994, vol. 30, no. 8, pp. 653–654. doi: 10.1049/el:19940430
23. Wu X., Zhang L, Liu C.-X., Ruan S.-C. High-stable, double-pass forward superfluorescent fiber source based on erbium-doped photonic crystal fiber. Applied Physics B. Laser and Optics, 2013, vol. 114, no. 3, pp. 433–438. doi: 10.1007/s00340-013-5537-8
24. Yang H., Ruan S., Yu Y., Zhou H. Erbium-doped photonic crystal fiber laser with 49 mW. Optics Communications, 2010, vol. 283, no. 16, pp. 3176–3179. doi: 10.1016/j.optcom.2010.04.021
25. Goel N.K., Pickrell G., Stolen R. An optical amplifier having 5 cm long silica-clad erbium doped phosphate glass fiber fabricated by "core-suction" technique. Optical Fiber Technology, 2014, vol. 20, no. 4, pp. 325–327. doi: 10.1016/j.yofte.2014.03.006
26. Falquier D.G., Digonnet M.J.F., Shaw H.J. A depolarized Er-doped superfluorescent fiber source with improved long-term polarization stability. IEEE Photonics Technology Letters, 2001, vol. 13, no. 1, pp. 25–27. doi: 10.1109/68.903209
27. Burns W.K., Kersey A.D. Fiber-optic gyroscopes with depolarized light. Journal of Lightwave Technology, 1992, vol. 10, no. 7, pp. 992–999. doi: 10.1109/50.144925
28. Burns W.K. Degree of polarization in the lyot depolarizer. Journal of Lightwave Technology, 1983, vol. 1, no. 3, pp. 475–479.
29. Falquier D.G., Digonnet M.J.F., Shaw H.J. Polarization and Wavelength Stable Superfluorescent Sources. Patent US6429965, 2002.
30. Falquier D.G., Digonnet M.J.F., Shaw H.J. A polarization-stable Er-doped superfluorescent fiber source including a faraday rotator mirror. IEEE Photonics Technology Letters, 2000, vol. 12, no. 11, pp. 1465–1467. doi: 10.1109/68.887672
31. Vasil'ev S.A., Medvedkov O.I., Korolev I.G., Dianov E.M. Photoinduced fiber gratings of the refractive index and their application. Foton-Ekspress, 2004, no. 6, pp. 163–183.
32. Gaiffe T., Simonpietri P., Morisse J., Cerre N., Taufflieb E., Lefevre H.C. Wavelength stabilization of an erbium-doped-fiber source with a fiber Bragg grating for high-accuracy FOG. Proceedings of SPIE, 1996, vol. 2837, pp. 375–380.
33. Vasil'ev S.A., Dianov E.M., Kurkov A.S., Medvedkov O.I., Protopopov V.N. Photoinduced in-fibre refractive-index gratings for core – cladding mode coupling. Quantum Electron, 1997, vol. 27, no. 2, pp. 146–149. doi: 10.1070/QE1997v027n02ABEH000893
34. Kashyap R., Wyatt R., McKee P.F. Wavelength flattened saturated erbium amplifier using multiple side-tap Bragg gratings. Electronics Letters, 1993, vol. 29, no. 11, pp. 1025–1026.
35. Dianov E.M., Karpov V.I., Kurkov A.S., Medvedkov O.I., Prokhorov A.M., Protopopov V.N., Vasil'ev S.A. Gain spectrum flattening of erbium doped fiber amplifier using long period grating. Photosensitivity and Quadratic Nonlinearity in Glass Waveguides: Fundamentals and Applications. Portland, USA, 1995, vol. 22, pp. 9–11.
36. Rao Y.-J., Jones J.D.C., Naruse H., Chen R.I. Erbium-doped superfluorescent fiber source for fiber optic gyroscope. Proc. SPIE, 2002, vol. 4920, pp. 1–4.
37. Wagener J.L., Hodgson C.W., Falquier D.G. Stable Fiber ASE Sources Incorporating Spectral Filtering. Patent US5875203, 1999.
38. Medvedkov O.I., Korolev I.G., Vasil'ev S.A. Zapis' Volokonnykh Breggovskikh Reshetok v Skheme s Interferometrom Lloida i Modelirovanie ikh Spektral'nykh Svoistv: preprint NTsVO IOF RAN [Recording of fiber Bragg gratings in Lloyd interferometer scheme and their spectral properties modeling: preprint FORC GPI]. Moscow, 2004, no. 6.
39. Ou P., Cao B., Zhang C.X., Li Y., Yang Y.H. Er-doped superfluorescent fibre source with enhanced mean-wavelength stability using chirped fibre grating. Electronics Letters, 2008, vol. 44, no. 3, pp. 187–189. doi: 10.1049/el:20082948
40. Wilkinson M., Belbington A., Cassidy S.A., McKee P. D-fibre filter for erbium gain spectrum flattening. Electron Letters, 2007, vol. 28, no. 2, pp. 131–132.
41. Tachibana M., Laming R.I., Morkel P.R., Payne D.N. Erbium-doped fiber amplifier with flattened gain spectrum. IEEE Photonics Technology Letters, 1991, vol. 3, no. 2, pp. 118–120. doi: 10.1109/68.76860
42. Huang W., Wang X., Xu H. Stable L-band superfluorescent fiber source using one pump. Optical Engineering, 2009, vol. 48, no. 7, art. 075002. doi: 10.1117/1.3168643
43. Tiana J.J., Yaoa Y., Suna Y.X., Xub X.C., Zhaoa X.H., Chen D.Y. Flat broadband erbium doped fiber ASE source based on symmetric nonlinear optical loop mirror. Laser Physics, 2010, vol. 20, no. 8, pp. 1760–1766. doi: 10.1134/S1054660X10150223
44. Betts R.A., Frisken S.J., Wong D. Technical digest conference. Optical Fiber Communication, 1995, vol. B, p. 80.
45. Inoue K., Kominato T., Toba H. Tunable gain equalization using a Mach-Zehnder optical filter in multistage fiber amplifiers. IEEE Photonics Technology Letters, 1991, vol. 3, no. 8, pp. 718–720. doi: 10.1109/68.84463
46. Wang L.A., Chen C.D. Comparison of efficiency and output power of optimal Er-doped superfluorescent fiber sources in different configurations. Electronics Letters, 1997, vol. 33, no. 8, pp. 703–704. doi: 10.1049/el:19970437
47. Huang Y.-W., Peng T.-S., Wang L.A., Liu R.-Y. Performance comparison of fiber-optic gyroscopes using single pass backward and double pass backward superfluorescent fiber sources. Proc. of SPIE, 2009, vol. 7503, art. 75034H. doi: 10.1117/12.835365
48. Matveev V.V., Pogorelov M.G. Error analysis of micromechanical gyroscopes by Allan variance. Izvestiya TulGU. Tekhnicheskie Nauki, 2015, no. 3, pp. 123–135.
49. Wang A. High stability Er-doped superfluorescent fiber source improved by incorporating bandpass filter. Photonics Technology Letters, 2011, vol. 23, no. 4, pp. 227–229. doi: 10.1109/LPT.2010.2098436
50. Wang H., Wang J. Characteristics analysis of two-stage Erbium-doped superfluorescent fiber source. Proc. 2012 Int. Symposium on Photonics and Optoelectronics. Shanghai, China, 2012. doi: 10.1109/SOPO.2012.6270957
51. Wang X. Ultra-high-deficiency L-band erbium-doped superfluorescent fiber source with broadening line width. Optical Engineering, 2010, vol. 49, no. 8, art. 085003. doi: 10.1117/1.3481119
52. Ales G., Espindola R.P., Strasser T.A. Article Comprising a High Power/Broad Spectrum Superfluorescent Fiber Radiation Source. Patent US 6507429, 2003.
53. Wang H., Li Y.-G., Chen X.-D., Zhang C., Chen S.-P., Lu F.-Y., Lu K.-C. L-band Erbium-doped optimization of double-pass two-directional broadband superfluorescent fiber source. Journal of Optoelectronic and Biomedical Materials, 2009, vol. 1, no. 1, pp. 1–7.
54. Chang J., Manqing T. Experimental optimization of an erbium-doped super-fluorescent fiber source for fiber optic gyroscopes. Journal of Semiconductors, 2011, vol. 32, no. 10, art. 104007. doi: 10.1088/1674-4926/32/10/104007
55. Belov A.V., Devyatykh G.G., Dianov E.M., Guryanov A.N., Gusovskiy D.D., Khopin V.F., Kurkov A.S. Sm3+-doped fibre application to spectral filtration in the range 1.53-1.57 μm. Soviet Lightwave Communications, 1992, vol. 2, no. 3, pp. 265–268.
56. Desurvire Е., Bayart D., Desthieux B., Bigo S. Erbium-Doped Fiber Amplifiers. NY, Jonn Wiley & Sons, 2002, 816 p.
57. Lebrasseur E., Gao Y., Boulard B., Jacquier B. Amplification in Er3+ doped PZG fluoride glass channel waveguides. ECOC, 1999, vol. 1, pp. 54–55.
58. Sklyarov O.K. Volokonno-Opticheskie Seti i Sistemy Svyazi [Fiber Optic Networks and Communication Systems]. St. Petersburg, Lan' Publ., 2010, 272 p.
59. Lisitsa M.P., Berezhinskii L.I., Valakh M.Ya. Volokonnaya Optika [Fiber Optics]. St. Petersburg, Tekhnika, 1968, 280 p.
60. Kielich S. Molecular Nonlinear Optics. Warsaw, PWN, 1977.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2022 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.