doi: 10.17586/2226-1494-2016-16-4-613-619


INFLUENCE OF SURFACE TREATMENT AND PURIFICATION METHODS OF CO-115M GLASS-CERAMICS ON OPTICAL CONTACT STRENGTH

N. V. Tikhmenev, S. A. Zakurnaev, A. V. Ozarenko, V. S. Bystritsky, S. A. Myagkov, R. A. Stolyarov, K. E. Chechetov, S. E. Korshunov


Read the full article  ';
Article in Russian

For citation: Tikhmenev N.V., Zakurnaev S.A., Ozarenko A.V., Bystritsky V.S., Myagkov S.A., Stolyarov R.A., Chechetov K.E., Korshunov S.E. Influence of surface treatment and purification methods of CO-115M glass-ceramics on optical contact strength. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2016, vol. 16, no. 4, pp. 613–619. doi: 10.17586/2226-1494-2016-16-4-613-619

Abstract

Subject of Research.We present findings of the optical contact for details made of СО-115Мglass-ceramics brand mark. The optical contact is the main method of joining parts made of CO-115M glass-ceramics brand mark in commercially available laser gyros. The existing technology has a number of unresolved issues related to the durability of the optical contact, that determine the tightness of the laser sensor internal volume. Method. Mechanical strength control of the optical contact consisted in the measurement of specific tear force of the connection. Mechanical strength tests of the optical contact were carried out with the use of RMI-250 tensile testing machine. The evenly increasing load of 50 N/s was applied to the samples in mechanical tests. The value with the occurence of the optical contact destruction was registered. Main Results. We have shown that one of the main factors determining the mechanical strength of the joint is cleanliness of the surfaces being connected. Comparison of the influence of different surface cleaning methods for optical elements on the optical contact durability has been given. The negative impact of even short-term storage of optical parts after washing on the assembly strength has been shown. The additional operation of mechanical polishing of surfaces of stored optical parts before connection enabled significantly reducing the scatter of the optical contact mechanical strength. We have also established experimentally that the heating of assembly of optical elements under vacuum at a temperature of 300°C leads to the twofold increase in the optical contact strength, while the optical contact remains separable. Practical Relevance. The carried out studies make it possible to improve the technical and operational characteristics of the laser gyroes. The use of additional mechanical cleaning of surfaces of optical parts and vacuum heating of the assembly in the process of laser sensor production may significantly improve the reliability, integrity, period of storage and operation.


Keywords: optical contact, strength, surface, glass ceramics, sitall

References

1. Obreimov I.V., Trekhov E.S. Opticheskii kontakt polirovannykh steklyannykh poverkhnostei [Optical contact of polished glass surfaces]. Journal of Experimental and Theoretical Physics, 1957, no. 2, pp. 185–193.
2. Lisitsyn Yu.V. Issledovanie Kontaktnogo Soedineniya Polirovannykh Opticheskikh Poverkhnostei: Dis. … Kand. Tekhn. Nauk [Investigation of Contact Connection of Polished Optical Surfaces. Dis. PhD Eng. Sci.]. Leningrad, 1976, 193 p.
3. Kachkin S.S., Listratova G.V., Ryzhakova V.A. Vliyanie masshtabnogo i vremennogo faktorov na mekhanicheskuyu prochnost' opticheskogo kontakta [Effect of scale and temporary factors on the mechanical strength of the optical contact]. Optiko-Mekhanicheskaya Promyshlennost', 1989, no. 3, pp. 46–48.
4. Zolotarev V.M., Kuraeva L.N., Kachkin S.S., Lisitsyn Yu.V. Issledovanie mekhanizma kontaktnogo vzaimodeistviya ploskikh poverkhnostei dielektrikov [Investigation of the mechanism of contact interaction of flat dielectrics surfaces]. Physics of the Solid State, 1978, vol. 20, no. 1, pp. 177–181.
5. Plobl A., Krauter G. Wafer direct bonding: tailoring adhesion between brittle materials. Materials Science and Engineering R: Reports, 1999, vol. 25, no. 1, pp. 1–88. doi: 10.1016/S0927-796X(98)00017-5
6. Spravochnik Tekhnologa-Optika [Handbook of optics technologist]. Ed. M.A. Okatov. 2nd ed. St. Petersburg, Politekhnika Publ., 2004, 679 p.
7. Azarova V.V., Akishev Yu.S., Blank V.D., Golyaev Yu.D., Golyaeva A.Yu., Grushin M.E., Kul'nitskii B.A., Petryakov A.V., Sukhov E.V., Trushkin N.I. Kholodnaya plazma pri atmosfernom davlenii kak effektivnyi instrument dlya uprochneniya opticheskogo kontakta v lazernykh giroskopakh. Kontenant, 2015, vol. 14, no. 2, pp. 64–69.
8. Guttner A., Herrmann J., Simon K.-H. Method of Making Laser Gyro Resonator Blocks. Patent US5181306, 1993.
9. Altmann G.R., Weber M.W. Method of Making a Ring Laser. Patent EP0251128, 1992.
10. Efremov A.A., Sal'nikov Yu.V. Izgotovlenie i Kontrol' Opticheskikh Detalei [Production and Control of Optical Components]. Moscow, Vysshaya Shkola Publ., 1983, 255 p.
11. Green K., Buke J., Oreb B. Chemical bonding for precision optical assemblies. Optical Engineering, 2011, vol. 50, no. 2, art. 023401. doi: 10.1117/1.3533034
12. Toshchina O.K., Kazakov E.N., Lisitsyn Yu.V., Putilin E.S. Opredelenie rasstoyaniya mezhdu kontaktiruyushchimi vysokotochnymi poverkhnostyami opticheskikh materialov. Doklady VII Vsesoyuznogo Simpoziuma po Mekhanoemissii i Mekhanokhimii Tverdykh Tel [Proc. VII Union Symposium on Mechanoemission and Mechanical Solids]. Tashkent, 1981, vol. 2, pp. 96–98.
13. Lyubovina L.A. Mekhanicheskaya prochnost' opticheskogo kontakta pri ispytaniyakh na otryv. Optiko-Mekhanicheskaya Promyshlennost', 1967, no. 3, pp. 41–43.
14. Vinogradov A.N., Matveev E.V., Zapotyl'ko N.R., Katkov A.A. Problems of optical contact accompanying the bonding of the elements of helium-neon lasers. Journal of Optical Technology, 2014, vol. 81, no. 4, pp. 215–219. doi: 10.1364/JOT.81.000215
15. Cherepnin N.V. Vakuumnye Svoistva Materialov dlya Elektronnykh Priborov [Vacuum Properties of Materials for Electronic Devices]. Moscow, Sovetskoe Radio Publ., 1966, 349 p.
16. Dashman S. Scientific Foundations of Vacuum Technique. New York, John Wiley & Son, 1962.
 



Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2022 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика