doi: 10.17586/2226-1494-2017-17-1-172-177


PARAMETRICAL IDENTIFICATION OF DIFFERENTIAL-DIFFERENCE HEAT TRANSFER MODEL DURING LIDAR TEMPERATURE MONITORING

K. A. Klyukvin, N. V. Pilipenko


Read the full article  ';
Article in Russian

For citation: Klyukvin K.A., Pilipenko N.V. Parametrical identification of differential-difference heat transfer model during lidar temperature monitoring. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2017, vol. 17, no. 1, pp. 172–177. doi: 10.17586/2226-1494-2017-17-1-172-177

Abstract

The paper deals with the parametrical identification method of differential-difference heat transfer models during determining of lidar temperature condition. The problem is solved for enclosure external flange that is the most thermally influenced device part. During researches carried out in a climatic chamber, discrepancy of the both flange temperature and mounted on it sensor temperature is detected. The need of measuring system thermal inertia compensation for the purpose of error decrease is proved. The algorithm for transient flange temperature determining by forward heat transfer problem solution is formed. The inverse procedure is carried out for the purpose of discrepancy minimizing between true object temperature and measured temperature. Computational experiments are carried out for calculating lidar enclosure flange temperature field under known external heat transfer conditions with the use of special computer program and experimental data. The experiment results enable to conclude about the value of error emerging because of temperature measuring system thermal inertia. We show application feasibility for proposed method of parametrical identification of differential-difference heat transfer model in object for error decrease during the device temperature monitoring and control.


Keywords: lidar temperature, heat flux, thermal inertia, parametrical identification, error

References
1.           Zuev V.E., Zuev V.V. Modern Problems of Atmospheric Optics. V. 8. Distance Optical Probing of Atmosphere. St. Petersburg, Gidrometeoizdat Publ., 1992, 232 p.
2.           Stepanov A.I., Karpov S.N., Kondrashov V.A., Sachava S.I., Samartsev M.S., Spivak L.A., Tershukov V.A., Rogov S.A., Mal'kov S.A. Shipborne lidar for hydrological research. Journal of Optical Technology, 2008, vol. 75, no. 2, pp. 101–106.
3.           Klyukvin K.A., Pilipenko N.V. Heat mode of lidar. Sbornik Trudov III Mezhdunarodnoi Nauchno-Prakticheskoi Konferentsii Sensorica-2015. St. Petersburg, 2015. (In Russian)
4.           Klyukvin K.A., Pilipenko N.V. Investigation of the thermal mode of lidar. Al'manakh Nauchnykh Rabot Molodykh Uchenykh Universiteta ITMO. St. Petersburg, 2016, vol. 2, pp. 307–308. (In Russian)
5.           Mezenov A.V., Soms L.N., Stepanov A.I. Thermo-Optics of Solid-State Lasers. Leningrad, Mashinostroenie Publ., 1986, 199 p. (In Russian)
6.           Kondrat'ev G.M., Dul'nev G.N., Platunov E.S., Yaryshev N.A. Prikladnaya Fizika: Teploobmen v Priborostroenii [Applied Physics: Heat Transfer in Instrumentation]. St. Petersburg, SPbSU ITMO, 2003, 560 p.
7.           Yaryshev N.A. Theoretical Basis of Non-Stationary Measurement of Temperature. 2nd ed. Leningrad, Energoatomizdat Publ., 1990, 256 p. (In Russian)
8.           Pilipenko N.V. Methods and Devices for Unsteady Heat Measuring Based on the Solution of Inverse Heat Conduction Problems. St. Petersburg, NRU ITMO Publ., 2011, 180 p. (In Russian)
9.           Simbirskii D.F. Temperaturnaya Diagnostika Dvigatelei [Thermal Diagnosis of Engines]. Kiev, Tekhnika Publ., 1976, 208 p.
10.        Pilipenko N.V. Methods of parametric identification in the non-stationary heat metering. Part 1. Journal of Instrument Engineering, 2003, vol. 46, no. 8, pp. 50–54. (In Russian)
11.        Pilipenko N.V. Methods of parametric identification in the non-stationary heat metering. Part 2. Journal of Instrument Engineering, 2003, vol. 46, no. 10, pp. 67–71. (In Russian)
12.        Alifanov O.M. Obratnye Zadachi Teploobmena [Inverse Problems of Heat Transfer]. Moscow, Mashinostroenie Publ., 1988, 280 p.
13.        Tikhonov A.N., Arsenin V.Ya. Metody Resheniya Nekorrektnykh Zadach [Methods for Solving Ill-Posed Problems]. Moscow, Nauka Publ., 1979, 284 p.
14.        Tsvetkov F.F., Grigor'ev B.A. Heat and Mass Transfer. 2nd ed. Moscow, MEI Publ., 2005, 550 p. (In Russian)
Dul'nev G.N. Teplo- i Massoobmen v Radioelektronnoi Apparature [Heat and Mass Transfer in Electronic Equipment]. Moscow, Vysshaya Shkola Publ., 1984, 247 p


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2022 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика