Nikiforov
Vladimir O.
D.Sc., Prof.
doi: 10.17586/2226-1494-2017-17-1-172-177
PARAMETRICAL IDENTIFICATION OF DIFFERENTIAL-DIFFERENCE HEAT TRANSFER MODEL DURING LIDAR TEMPERATURE MONITORING
Read the full article ';
For citation: Klyukvin K.A., Pilipenko N.V. Parametrical identification of differential-difference heat transfer model during lidar temperature monitoring. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2017, vol. 17, no. 1, pp. 172–177. doi: 10.17586/2226-1494-2017-17-1-172-177
Abstract
The paper deals with the parametrical identification method of differential-difference heat transfer models during determining of lidar temperature condition. The problem is solved for enclosure external flange that is the most thermally influenced device part. During researches carried out in a climatic chamber, discrepancy of the both flange temperature and mounted on it sensor temperature is detected. The need of measuring system thermal inertia compensation for the purpose of error decrease is proved. The algorithm for transient flange temperature determining by forward heat transfer problem solution is formed. The inverse procedure is carried out for the purpose of discrepancy minimizing between true object temperature and measured temperature. Computational experiments are carried out for calculating lidar enclosure flange temperature field under known external heat transfer conditions with the use of special computer program and experimental data. The experiment results enable to conclude about the value of error emerging because of temperature measuring system thermal inertia. We show application feasibility for proposed method of parametrical identification of differential-difference heat transfer model in object for error decrease during the device temperature monitoring and control.
References