doi: 10.17586/2226-1494-2017-17-6-1033-1044


COMPUTER SIMULATION OF INTERACTION OF LYSINE DENDRIMERS WITH STACK OF AMYLOID PEPTIDES

E. V. Popova, D. N. Khamidova, I. M. Neelov, F. S. Komilov, F. Leermakers


Read the full article  ';
Article in Russian

For citation: Popova E.V., Khamidova D.N., Neelov I.M., Komilov F.S., Leermakers F. Computer simulation of interaction of lysine dendrimers with stack of amyloid peptides. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2017, vol. 17, no. 6, pp. 1033–1044 (in Russian). doi: 10.17586/2226-1494-2017-17-6-1033-1044

Abstract
Subject of Research. Dendrimers are polymer molecules that regularly branch from a single center. Dendrimers can be used as antibacterial, antiviral and anti-amyloid agents. Recently, it has been shown experimentally that some dendrimers can prevent the formation of amyloid fibrils and destroy already existing fibrils consisting of stacks of amyloid peptides. Two systems containing lysine dendrimers of the second or third generation and a stack of 16 amyloid peptides in aqueous solution were studied in the present paper. Method. The study was carried out by computer simulation with the use of the molecular dynamics method. Main Results. It was shown that lysine dendrimers of the second or third generations destroy amyloid stack and form stable complex with peptides. Both kinetics of the amyloid stack destruction and formation of complexes with dendrimers, and the equilibrium structures of the complexes formed were studied. In particular, it was shown that electrostatic interactions between charged groups of dendrimers and peptides play the main role in the destruction of stacks. In the complexes obtained, the peptides are located mainly on the surface of the dendrimer and only slightly penetrate into the complex. Practical Relevance. The data obtained can be used in the future in the treatment of Alzheimer's disease, since it is believed that one of the reasons for its occurrence is the formation of oligomers and fibrils consisting of stacks of amyloid peptides.

Keywords: lysine dendrimers, amiloid fibrils, computer simulation, molecular dynamics method

Acknowledgements. This work was supported by grants of the Russian Federation Government 074-U01 and RFBR 16-03-00775. The authors express their gratitude to Supercomputer Center of Lomonosov Moscow State University for submission of computer re-sources.

References
1.      Petkova A.T., Yau W.M., Tycko R. Experimental constraints on quaternary structure in Alzheimer's β-amyloid fibrils. Biochemistry, 2006, vol. 45, no. 2, pp. 498–512. doi: 10.1021/bi051952q
2.      Paravastu A.K., Leapman R.D., Yau W.M., Tycko R. Molecular structural basis for polymorphism in Alzheimer's β-amyloid fibrils. Proc. National Academy of Science USA, 2008, vol. 105, no. 47, pp. 18349–18354. doi: 10.1073/pnas.0806270105
3.      Klajnert B., Bryszewska M., Cladera J. Molecular interactions of dendrimers with amyloid peptides: pH dependence. Biomacromolecules, 2006, vol. 7, no. 7, pp. 2186–2191. doi: 10.1021/bm060229s
4.      Neelov I.M., Janaszewska A., Klajnert B., Bryszewska M., Makova N., Hicks D., PearsonH., Vlasov G.P., Ilyash M.Yu., Vasilev D.S., Dubrovskaya N.M., Tumanova N.L., Zhuravin I.A., Turner A.J., Nalivaeva N.N. Molecular properties of lysine dendrimers and their interactions with Ab-peptides and neuronal cells.CurrentMedical Chemistry, 2013, vol. 20,
no. 1, pp. 134–143. doi: 10.2174/09298673130113
5.      Alder B.J., Wainwright T.E. Molecular dynamics by electronic computers. Proc. Int. Symposium on Transport Processes in Statistical Mechanics. Brussel, 1956, pp. 97–131.
6.      Verlet L. Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Physical Review, 1967, vol. 159, no. 1, pp. 98–103. doi: 10.1103/PhysRev.159.98
7.      Stillinger F.H., Rahman A. Molecular dynamics study of temperature effects on water structure and kinetics. The Journal of Chemical Physics, 1972,vol. 57,no.3, pp. 1281–1292.
8.      Balabaev N.K., Grivtsov A.G., Shnol' E.E. Numerical Modeling of Molecular Motion: Preprint IPM. Moscow, 1972, 38 p.(In Russian).
9.      Neelov I.M. Equations of Motion and Relaxation Times of the Chain Macromolecule. Graduate Work. Leningrad, LSU Publ., 1974. (In Russian).
10.   Ryckaert J.P., Ciccotti G., Berendsen H.J.C. Numerical integration of Cartesian equations of motion of a systems with constraints-molecular dynamics of n-alkanes. Journal of Computational Physics, 1977, vol. 23, no. 3, pp. 327–341. doi: 10.1016/0021-9991(77)90098-5
11.   Hess B., Kutzner C., Van Der Spoel D., Lindahl E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 2008, vol. 4, no. 3, pp. 435–447. doi: 10.1021/ct700301q
12.   Hornak V., Abel R., Okur A., Strockbine D., Roitberg A., Simmerling C. Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins: Structure Function and Genetics, 2006, vol. 65, no. 3, pp. 712–725. doi: 10.1002/prot.21123
13.   Darinskii A., Gotlib Yu., Lukyanov M., Neelov I. Computer simulation of the molecular motion in LC and oriented polymers. Progress in Colloid & Polymer Science, 1993, vol. 91, pp. 13–15.
14.   Darinskii A.A., Gotlib Yu.Ya., Lyulin A.V., Neelov I.M. Computer simulation of local dynamics of polymer chain in the orienting field of the LC type. Vysokomoleculyanye Soedineniya, Seriya A, 1991, vol. 33, no. 6, pp. 1211–1220. (In Russian).
15.   Darinskii A., Lyulin A., Neelov I. Computer simulations of molecular motion in liquid crystals by the method of Brownian dynamics. Macromolecular Theory and Simulations, 1993, vol. 2, pp. 523–530. doi: 10.1002/mats.1993.040020402
16.   Neelov I.M., Binder K. Brownian dynamics of grafted polymer brushes. Macromolecular Theory and Simulations, 1995, vol. 4, no. 1, pp. 119–136. doi: 10.1002/mats.1995.040040108
17.   Neelov I.M., Binder K. Brownian dynamics of grafted polymer chains: time dependent properties. Macromolecular Theory and Simulations, 1995, vol. 4, no. 6, pp. 1063–1084. doi: 10.1002/mats.1995.040040605
18.   Ennari J., Elomaa M., Neelov I., Sundholm F. Modelling of water-free and water containing solid polyelectrolytes. Polymer, 2000, vol. 41, no. 3, pp. 985–990. doi: 10.1016/S0032-3861(99)00235-9
19.   Ennari J., Neelov I., Sundholm F. Comparison of cell multipole and Ewald summation methods for solid polyelectrolyte. Polymer, 2000, vol. 41, no. 6, pp. 2149–2155. doi: 10.1016/S0032-3861(99)00382-1
20.   Molecular dynamics simulation of the PEO sulfonic acid anion in water. Computational and Theoretical Polymer Science, 2000, vol. 10, no. 5, pp. 403–410.
21.   Ennari J., Neelov I., Sundholm F. Molecular dynamics simulation of the structure of PEO based solid polymer electrolytes. Polymer, 2000, vol. 41, no. 11, pp. 4057–4063.
22.   Ennari J., Neelov I., Sundholm F. Estimation of the ion conductivity of a PEO-based polyelectrolyte system by molecular modeling. Polymer, 2001, vol. 42, no. 3, pp. 8043–8050.
23.   Ennari J., Neelov I., Sundholm F. Modelling of gas transport properties of polymer electrolytes containing various amount of water. Polymer, 2004, vol. 45, no. 12, pp. 4171–4179. doi: 10.1016/j.polymer.2004.03.096
24.   Neelov I.M., Adolf D.B., Lyulin A.V., Davies G.R. Brownian dynamics simulation of linear polymers under elongational flow: bead-rod model with hydrodynamic interactions.Journal of Chemical Physics,2002, vol. 117, no. 8, pp. 4030–4041. doi: 10.1063/1.1493187
25.   Neelov I.M., Adolf D.B. Brownian dynamics simulation of hyperbranched polymers under elongational flow. Journal of Physical Chemistry B, 2004, vol. 108, no. 10, pp. 7627–7636. doi: 10.1021/jp030994q
26.   Neelov I.M., Adolf D.B. Brownian dynamics simulations of dendrimers under elongational flow: bead-rod model with hydrodynamic interactions. Macromolecules, 2003,vol. 36, no. 18, pp. 6914–6924.doi: 10.1021/ma030088b
27.   Sheridan P.F., Adolf D.B., Lyulin A.V., Neelov I., Davies G.R. Computer simulations of hyperbranched polymers: the influence of the Wiener index on the intrinsic viscosity and radius of gyration. Journal of Chemical Physics, 2002, vol.117, no. 16, pp. 7802–7812. doi: 10.1063/1.1507774
28.   Mazo M.A., Shamaev M.Y., Balabaev N.K., Darinskii A.A., Neelov I.M. Conformational mobility of carbosilane dendrimer: molecular dynamics simulation. Physical Chemistry Chemical Physics, 2004, vol. 6, no. 6, pp. 1285–1289.
29.   Neelov I.M., Adolf D.B., McLeish T.C.B., Paci E. Molecular dynamics simulation of dextran extension by constant force in single molecule AFM. Biophysical Journal, 2006, vol. 91, no. 10,pp. 3579–3588. doi: 10.1529/biophysj.105.079236
30.   Neelov I.M., Markelov D.A., Falkovich S.G., Ilyash M.Yu., Okrugin B.M., Darinskii A.A. Mathematical simulation of lysine dendrimers: Temperature dependences. Polymer Science - Series C, 2013, vol. 55, no. 1, pp. 154–161. doi: 10.1134/S1811238213050032
31.   Falkovich S., Markelov D., Neelov I., Darinskii A. Are structural properties of dendrimers sensitive to the symmetry of branching? Computer simulation of lysine dendrimers. Journal of Chemical Physics, 2013, vol. 139, no. 7, p. 064903. doi: 10.1063/1.4817337
32.   Neelov I., Falkovich S., Markelov D., Paci E., Darinskii A., Tenhu H. Molecular dynamics of lysine dendrimers. Computer simulation and NMR. In: Dendrimers in Biomedical Applications. London, Royal Society of Chemistry, 2013, pp. 99–114.
33.   Yudin V.E., Dobrovolskaya I.P., Neelov I.M. et al.Wet spinning of fibers made of chitosan and chitin nanofibrils. Carbohydrate Polymers, 2014, vol. 108, no. 1, pp. 176–182. doi: 10.1016/j.carbpol.2014.02.090
34.   Neelov I.M., Mistonova A.A., Khvatov A.Y., Bezrodny V.V. Molecular dynamic simulation of peptide polyelectrolytes. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2014, no. 4, pp. 169–175. (In Russian).
35.   Popova E.V., Shavykin O.V., Neelov I.M., Leemakers F. Molecular dynamics simulation of lysine dendrimer and semax peptides interaction. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2016, vol. 16, no. 4, pp. 716–724. (In Russian). doi: 10.17586/2226-1494-2016-16-4-716-724
36.   Shavykin O.V., Popova E.V., Darinskii A.A., Neelov I.M., Leermakers F. Computer simulation of local mobility in dendrimers with asymmetric branching by Brownian dynamics method. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2016, vol. 16, no. 5, pp. 893–902. (In Russian). doi: 10.17586/2226-1494-2016-16-5-893-902
37.   Ilyash M.Yu., Khamidova D.N., Okrugin B.M., Neelov I.M. Computer simulation of lysine dendrimers and their interactions with amyloid peptides.WSEAS Transaction on Biology and Biomedicine, 2015, vol. 12, pp. 79–86.
38.   Popova E., Okrugin B., Neelov I. Molecular dynamics simulation of interaction of short lysine brush and oppositely charged Semax peptides. Natural Science, 2016, vol. 8, no. 12, pp. 499–510. doi: 10.4236/ns.2016.812051
39.   Markelov D.A., Falkovich S.G., Neelov I.M., Ilyash M.Yu., Matveev V.V., Lahderanta E., Ingman P., Darinskii A.A. Molecular dynamics simulation of spin-lattice NMR relaxation in poly-L-lysine dendrimers. Manifestation of the semiflexibility effect. Physical Chemistry and Chemical Physics, 2015, vol. 17, pp. 3214–3226. doi: 10.1039/c4cp04825c
40.   Shavykin O.V., Neelov I.M., Darinskii A.A. Is the manifestation of the local dynamics in the spin-lattice NMR relaxation in dendrimers sensitive to excluded volume interactions? Physical Chemistry Chemical Physics, 2016, vol. 18, no. 35, pp. 24307–24317. doi: 10.1039/c6cp01520d
41.   Neelov I., Popova E. Complexes of lysine dendrimer of 2nd/3rd generations and semax peptides. molecular dynamics simulation. WSEAS Transaction on Biology and Biomedicine, 2017, vol. 14, pp. 75–82.
42.   Okrugin B.M., Neelov I.M., Borisov O.V., Leermakers F.A.M. Structure of asymmetrical peptide dendrimers: insights given by self-consistent field theory.Polymer, 2017, vol. 125, pp. 292–302. doi: 10.1016/j.polymer.2017.07.060
43.   Neelov I., Popova E. Molecular dynamics simulation of complex formation by lysine dendrigraft of second generation and semax peptide.International Journal of Materials, 2017,vol. 4, pp. 16–21.
44.   Sadovnichy V., Tikhonravov A., Voevodin V., Opanasenko V. "Lomonosov": supercomputing at Moscow State University. In: Contemporary High Performance Computing: From Petascale Toward Exascale. Boca Raton, USA, CRC Press, 2013, pp. 283–307.


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика