Menu                
                
            Publications                
            2025
                    
                                        
                        2024
                    
                                        
                        2023
                    
                                        
                        2022
                    
                                        
                        2021
                    
                                        
                        2020
                    
                                        
                        2019
                    
                                        
                        2018
                    
                                        
                        2017
                    
                                        
                        2016
                    
                                        
                        2015
                    
                                        
                        2014
                    
                                        
                        2013
                    
                                        
                        2012
                    
                                        
                        2011
                    
                                        
                        2010
                    
                                        
                        2009
                    
                                        
                        2008
                    
                                        
                        2007
                    
                                        
                        2006
                    
                                        
                        2005
                    
                                        
                        2004
                    
                                        
                        2003
                    
                                        
                        2002
                    
                                        
                        2001
                    
                                Editor-in-Chief                
            
                    Nikiforov
Vladimir O.
D.Sc., Prof.
Partners                
            doi: 10.17586/2226-1494-2017-17-6-1153-1158
LOWER LIMB EXOSKELETONS: BRIEF REVIEW
Read the full article
	        Article in  English
		
For citation: Ergasheva B.I. Lower limb exoskeletons: brief review. Scientific and Technical Journal of Information Technologies, Mechanics and Optics , 2017, vol. 17, no. 6, pp. 1153–1158 (in English). doi: 10.17586/2226-1494-2017-17-6-1153-1158
		        
Abstract
 
		
For citation: Ergasheva B.I. Lower limb exoskeletons: brief review. Scientific and Technical Journal of Information Technologies, Mechanics and Optics , 2017, vol. 17, no. 6, pp. 1153–1158 (in English). doi: 10.17586/2226-1494-2017-17-6-1153-1158
Abstract
	The paper provides a brief review on structural and technological features of Lower Limb Exoskeletons that have been manufactured until recently and the description of their disadvantages.  Exoskeleton is a device designed to compensate for the lost functions of a human operator by increasing muscle strength and expanding movement amplitude with its outer frame and driving parts. Lower Limb Exoskeletons are developed to support people who have partially or completely lost lower limbs dynamics. The research and development background dates back to 1960s. Over the years, great progress has been made by scientists and researchers from all around the world. However, despite various strategies and attempts to achieve perfection in operating an exoskeleton in the current state of science and technology, it is still a challenge to develop an auxiliary model that endows with both super-efficiency and naturalness. Consequently, the paper intends to highlight the problems to be resolved and the future trends in this field. Exoskeletons have been limited in their availability for wider application by general population because of their high cost. Moreover, technological and structural issues related to design, safety, framework deterioration and optimization remain open-ended. As a technological breakthrough is an evolving process, this review can assist in conducting current research and making recommendations for perspective developments in the field of Lower Limb Exoskeletons.
	        Keywords: exoskeleton, lower limb exoskeleton, robotics, robots, review, rehabilitation, legs, orthosis, assistive device		        
References
    
        References
	1.      Vukobratovic M.K. When were active exoskeletons actually born? // International Journal of Humanoid Robotics. 2007.
	V. 4. N 3. P. 459–486. doi: 10.1142/S0219843607001163
	2.      Vukobratovic M.K. Active exoskeletal systems and beginning of the development of humanoid robotic / In: Monograph of ANS: Academy of Nonlinear Sciences. Advances in Nonlinear Sciences II – Sciences and Applications. Belgrade, 2008. V. 2. P. 329–348.
	3.      Vukobratovic M.K., Hristic D., Stojiljkovic Z. Development of active anthropomorphic exoskeletons // Medical and Biological Engineering. 1974. V. 12. N 1. P. 66–80. doi:10.1007/BF02629836
	4.      Hristic D., Vukobratovic M.K. Active exoskeletons future rehabilitation aids for severely handicapped persons // Orthopedie Technique. 1976. N 19. P. 221–224.
	5.      Vukobratovic M.K., Borovac B., Stokic D., Surdilovic D. Humanoid robots / In: Mechanical Systems Design Handbook: Modeling, Measure and Control. CRC Press, 2001. P. 727–777. doi:
	6.      Kazerooni H. Human augmentation and exoskeleton systems in Berkeley // International Journal of Humanoid Robotics. 2007. V. 4. N 3. P. 575–605. doi: 10.1142/S0219843607001187
	7.      Wang S., Wang L., Meijneke C., van Asseldonk E., Hoellinger T. et al. Design and control of the MINDWALKER exoskeleton // IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2015. V. 23. N 2. P. 277–286. doi: 10.1109/TNSRE.2014.2365697
	8.      Wang L., Wang S., Edwin H.F. van Asseldonk E., van der Kooij H. Actively controlled lateral gait assistance in a lower limb exoskeleton // Proc. IEEE Conf. on Intelligent Robots and Systems (IROS). Tokyo, Japan, 2013. P. 965–970. doi: 10.1109/IROS.2013.6696467
	9.      Wang S., Meijneke C., van der Kooij H. Modeling, design, and optimization of Mindwalker series elastic joint // IEEE 13th Int. Conf. on Rehabilitation Robotics. Seattle, USA, 2013. doi:10.1109/ICORR.2013.6650381
	10.   Krut S., Benoit M., Dombre E., Pierrot F. MoonWalker, a lower limb exoskeleton able to sustain bodyweight using a passive force balancer // Proc. IEEE Int. Conf. on Robotics and Automation. Anchorage, USA, 2010. P. 2215–2220. doi: 10.1109/ROBOT.2010.5509961
	11.   Park Y.-L., Chen B.R., Perez-Arancibia N.O. et al. Design and control of a bio-inspired soft wearable robotic device for ankle, foot rehabilitation // Bioinspiration and Biomimetics. 2014.
V. 9. N 1. doi: 10.1088/1748-3182/9/1/016007
V. 9. N 1. doi: 10.1088/1748-3182/9/1/016007
	12.   Farris D.J., Hicks J.L., Delp S.L., Sawicki G.S. Musculoskeletal modelling deconstructs the paradoxical effects of elastic ankle exoskeletons on plantar-flexor mechanics and energetics during hopping // Journal of Experimental Biology. 2014. V. 217.
N 22. P. 4018–4028. doi:10.1242/jeb.107656
N 22. P. 4018–4028. doi:10.1242/jeb.107656
	13.   Curtis S., Kobetic R., Bulea T.C. et al. Sensor-based hip control with hybrid neuroprosthesis for walking in paraplegia // Journal of Rehabilitation Research and Development. 2014. V. 51. N 2. P. 229–244. doi: 10.1682/JRRD.2012.10.0190
	14.   Murray S.A., Ha K.H., Hartigan C., Goldfarb M. An assistive control approach for a lower-limb exoskeleton to facilitate recovery of walking following stroke // IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2014. V. 23.
N 3. P. 441–449. doi: 10.1109/TNSRE.2014.2346193
N 3. P. 441–449. doi: 10.1109/TNSRE.2014.2346193
	15.   Del-Ama A.J., Gil-Agudo A., Pons J.L., Moreno J.C. Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton // Journal of Neuro Engineering and Rehabilitation. 2014. V. 11. N 1. Art. 27. doi: 10.1186/1743-0003-11-27
	16.   Cruciger O., Schildhauer T.A., Meindl R.C. et. al. Impact of locomotion training with a neurologic controlled hybrid assistive limb (HAL) exoskeleton on neuropathic pain and health related quality of life (HRQoL) in chronic SCI: a case study // Disability and Rehabilitation: Assistive Technology. 2014. V. 11. N 6. P. 529–534. doi:10.3109/17483107.2014.981875
	17.   Van Dijk W., Van der Kooij H. Optimization of human walking for exoskeletal support // Proc. IEEE Int. Conf. on Rehabilitation Robotics. Seattle, USA, 2013. doi:10.1109/ICORR.2013.6650394
	18.   Kazerooni H. The human power amplifier technology at the University of California, Berkeley // Robotics and Autonomous Systems. 1996. V. 19. N 2. P. 179–187.
	19.   Banala S.K., Agrawal S.K., Scholz J.P. Active Leg Exoskeleton (ALEX) for gait rehabilitation of motor-impaired patients // Proc. IEEE 10th Int. Conf. on Rehabilitation Robotics. Noordwijk, Netherlands, 2007. P. 401–407. doi: 10.1109/ICORR.2007.4428456
	20.   Banala S.K., Kim S.H, Agrawal S.K., Scholz J.P. Robot assisted gait training with Active Leg Exoskeleton (ALEX) // IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2009. V. 17. N 1. P. 2–8. doi: 10.1109/TNSRE.2008.2008280
	21.   Banala S.K., Agrawal S.K., Kim S.H., Scholz J.P. Novel gait adaptation and neuromotor training results using an active leg exoskeleton // IEEE/ASME Transactions on Mechatronics. 2010. V. 15. N 2. P. 216–225. doi: 10.1109/TMECH.2010.2041245
	22.   Okubo A., Kiyama T., Osuka K., Shirogauchi G., Oya R., Fujimoto H. A dynamic model of power-assistive machinery with high strength-amplification // Proceedings of SICE Annual Conference. 2010. P. 2026–2029.
	23.   Rosen J., Arcan M. Performances of hill-type and neural network muscle models – towards a myosignal based exoskeleton // Computers and Biomedical Research. 1999. V. 32. N 5. P. 415–439. doi: 10.1006/cbmr.1999.1524
	24.   Harada K., Kajita S., Kanehiro F. et al. Real-time planning of humanoid robot's gait for force-controlled manipulation // IEEE/ASME Transactions on Mechatronics. 2007. V. 12. N 1. P. 53–62. doi: 10.1109/TMECH.2006.886254
	25.   Kajita S., Morisawa M., Miura K. et al. Biped walking stabilization based on linear inverted pendulum tracking // Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS). Taipei, Taiwan, 2010. P. 4489–4496. doi: 10.1109/IROS.2010.5651082
	26.   Sellaouti R., Stasse O., Kajita S. et al. Faster and smoother walking of humanoid HRP-2 with passive toe joints // Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS). Beijing, China, 2006. P. 4909–4914. doi: 10.1109/IROS.2006.282449
	27.   Arisumi H., Miossec S., Chardonnet J.R. Dynamic lifting by whole body motion of humanoid robots // Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS). Nice, France, 2008. P. 668–678. doi:10.1109/IROS.2008.4651195
	28.   Talaty M., Esquenazi A., Briceno J.E. Differentiating ability in users of the ReWalkTM powered exoskeleton: an analysis of walking kinematics // Proc. IEEE 13th Int. Conf. on Rehabilitation Robotics. Seattle, USA, 2013. doi: 10.1109/ICORR.2013.6650469
	29.   Ryder M.C., Sup F. Leveraging gait dynamics to improve efficiency and performance of powered hip exoskeletons // Proc. IEEE 13th Int. Conf. on Rehabilitation Robotics. Seattle, USA, 2013. doi: 10.1109/ICORR.2013.6650440
	30.   Elliott G., Sawicki G.S., Marecki A., Herr H. The biomechanics and energetics of human running using an elastic knee exoskeleton // Proc. IEEE 13th Int. Conf. on Rehabilitation Robotics. Seattle, USA, 2013. doi: 10.1109/ICORR.2013.6650418
	31.   Колюбин С.А., Мусалимов В.М. Биомехатроника: шаги навстречу энергоэффективным роботам // ControlEngineeringРоссия. 2017. № 2(68). С. 92–95.
	32.   Hassan M., Kadone H., Suzuki K., Sankai Y. Wearable gait measurement system with an instrumented cane for exoskeleton control // Sensors. 2014. V. 14. N 1. P. 1705–1722. doi:10.3390/s140101705
	33.   Боровин Г.К., Костюк А.В., Сит Д. Компьютерное моделирование гидравлической системы управления экзоскелетона // Препринты ИПМ им. М.В. Келдыша. 2004. № 79. С. 1–24.
	34.   Meuleman J., Van Asseldonk E.H.F., Van Der Kooij H. Novel actuation design of a gait trainer with shadow leg approach // Proc. IEEE 13th Int. Conf. on Rehabilitation Robotics. Seattle, USA, 2013. doi: 10.1109/ICORR.2013.6650369
	35.   Sylos-Labini F., La Scaleia V., d’Avella A., et al. EMG patterns during assisted walking in the exoskeleton // Frontiers in Human Neuroscience. 2014. V. 8. Art. 423. doi: 10.3389/fnhum.2014.00423
	36.   Yu H., Huang S., Thakor N.V. et al. A novel compact compliant actuator design for rehabilitation robots // Proc. IEEE 13th Int. Conf. on Rehabilitation Robotics. Seattle, USA, 2013. doi: 10.1109/ICORR.2013.6650478
	37.   Yan T., Cempini M., Oddo C.M., Vitiello N. Review of assistive strategies in powered lower-limb orthoses and exoskeletons // Robotics and Autonomous System. 2015. V. 64. P. 120–136. doi: 10.1016/j.robot.2014.09.032
	38.   Hyun D.J., Park H., Ha T., Park S., Jung K. Biomechanical design of an agile, electricity-powered lower-limb exoskeleton for weight-bearing assistance // Robotics and Autonomous Systems. 2017. V. 95. P. 181–195. doi: 10.1016/j.robot.2017.06.010
	39.   Aliman N., Ramli R., Haris S.M. Design and development of lower limb exoskeletons: a survey // Robotics and Autonomous Systems. 2017. V. 95. P. 102–116. doi: 10.1016/j.robot.2017.05.013
	40.   Dollar A.M., Herr H. Design of a quasi-passive knee exoskeleton to assist running // Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS). Nice, France, 2008. P. 747–754. doi: 10.1109/IROS.2008.4651202
		    
        
                        
                        
                        
                        
                        
                        
                        
                        
                        
                        