doi: 10.17586/2226-1494-2018-18-1-43-49


V. S. Sibirtsev, K. V. Volkova, A. K. Khaydarov, Tran Thanh Tuan, S. A. Stroev, M. A. Radin

Read the full article  ';
Article in Russian

For citation: Sibirtsev V.S., Volkova K.V., Khaydarov A.Kh., Chan Than Tuan, Stroev S.A., Radin M.A. Research of biodegradation and antimicrobial properties of polyvinyl chloride sheetings with pectin and starch additives. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2018, vol. 18, no. 1, pp. 43–49 (in Russian). doi: 10.17586/2226-1494-2018-18-1-43-49


 The paper describes a new methodof stability assessment of polymericmaterials to destruction caused by various factors (such as mechanical loads, moisture and microorganisms' vital activity). This method includes puncture resistance comparison of researched material samples, determined after nine-day incubation of these samples in liquid nutrient medium with test microorganisms and daily 40 vol.% substitution of this medium for a sterile one, as well as after incubation of similar samples in a sterile medium, and without incubation of these samples. The described methodwas used to study stability of a number of new polymericmaterials to various types of destruction. The materials were made on the basis of vinyl chloride polymer with addition of 0, 1, 5 and 10 mass.% of starch and pectin. The effect of the mentioned materials on the growth and metabolicactivity in liquid nutrientmedium ofEscherichia coliATCC 25922 was studied also (according to dynamics of intensity change of elastic optical dispersion and conductivity of the mentioned medium during the first ten hours of its incubationat the presence of tested objects and test microorganisms). As a result, it is shown that all researched materials are resistant to moisture action. At the same time, allused additives even in 1 mass.% quantity considerably reduced mechanical strength of researched materials compared with pure vinyl chloride polymer; as well as increased biodegradationof thesematerials(though in substantially smaller degree at small quantities of the additives). Moreover,the lattereffect was provided by the addition of starchto vinyl chloride polymerin considerably greater degree, than the addition of pectin.Besides, all used additives reduced the antimicrobialeffect of the polyvinyl chloride base of researched materials. The more starch or pectin was contained in researched material, the greater reduction occurred; at the identical quantity of them it occurred in the presence of starch to a greater extent, than in the presence of pectin.

Keywords: biodegradation, polymers, polyvinyl chlorides, starch, pectin, antimicrobial properties

 1.      Uspenskaya M.V., Sirotinkin N.V., Sharapov S.V. Particularities in combustion of filled foamed polyurethanes. Plasticheskie Massy: Sintez Svojstva Pererabotka Primenenie, 2005, no. 7, pp. 23–25. (In Russian)
2.      Podshivalov A.V., Bronnikov S., Zuev V.V., Jiamrungraksa T., Charuchinda S. Synthesis and characterization of polyurethane-urea microcapsules containing galangal essential oil: statistical analysis of encapsulation.Journal of Microencapsulation, 2013, vol. 30, no. 2, pp. 198–203. doi: 10.3109/02652048.2012.735261
3.      Gerard T., Budtova T., Podshivalov A., Bronnikov S. Polylactide/poly(hydroxybutyrate-co-hydroxyvalerate) blends: morphology and mechanical properties. Express Polymer Letters, 2014, vol. 8,no. 8,pp. 609–617. doi: 10.3144/expresspolymlett.2014.64
4.      Podshivalov A.V., Bronnikov S.V., Gerard T., Budtova T.V. Morphology and mechanical properties of a mixture of polylactide-copolymer of polyhydroxy acids. Fiziko-Khimiya Polimerov: Sintez, Svoistva i Primenenie, 2014, no. 20, pp. 35–40. (In Russian)
5.      Olekhnovich R.O., Volkova K.V., Uspenskii A.A., Slobodov A.A., Uspenskaya M.V.Synthesis of poly(acrylic acid)-co-acrylamide/bentonite polymer nanocomposite as an absorbent for removal of heavy metal ions from water. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM. Albena, Bulgaria, 2015, pp. 477–484.
6.      Denisyuk I.Y., Pozdnyakova S.A., Koryakina I.G., Uspenskaya M.V., Volkova K.V. Polymer photodegradation initiated by ZnO nanoparticles. Optics and Spectroscopy, 2016, vol. 121, no. 5, pp. 778–781. doi: 10.1134/S0030400X16110096
7.      Podshivalov A., Zakharova M., Glazacheva E., Uspenskaya M. Gelatin/potato starch edible biocomposite films: correlation between morphology and physical properties. Carbohydrate Polymers, 2017, vol. 157, pp. 1162–1172. doi: 10.1016/j.carbpol.2016.10.079
8.      Bilibin A.Yu., Zorin I.M.Polymer degradation and its role in nature and modern medical technologies. Russian Chemical Reviews, 2006, vol. 75, no. 2, pp. 133–145. doi: 10.1070/RC2006v075n02ABEH001213
9.      VlasovC.B., Ol'khov V.V. Biodegradable polymer materials. Polimernye Materialy, 2006, no. 7, pp. 23–26. (In Russian)
10.   Vroman I., Tighzert L. Biodegradable polymers. Materials, 2009, vol. 2, no. 2, pp. 307–344. doi: 10.3390/ma2020307
11.   Ozdil D., Aydin L.M. Polymers for medical and tissue engineering applications. Journal of Chemical Technology and Biotechnology, 2014, vol. 89, no. 12, pp. 1793–1810. doi: 10.1002/jctb.4505
12.   Nigmatullin R., Thomas P., Lukasiewicz B., Puthussery H., Roy I. Polyhydroxyalkanoates, a family of natural polymers, and their applications in drug delivery. Journal of Chemical Technology and Biotechnology, 2015, vol. 90, no. 7,
pp. 1209–1221. doi: 10.1002/jctb.4685
13.   Esparza Y., Ullah A., Wu J. Preparation and characterization of graphite oxide nano-reinforced biocomposites from chicken feather keratin. Journal of Chemical Technology and Biotechnology, 2017, vol. 92, no. 8, pp. 2023–2031. doi: 10.1002/jctb.5196
14.   Sibirtsev V.S. New method of biotesting with microbes using. Problems in Medical Micology, 2014, vol. 16, no. 2, p. 127. (In Russian)
15.   SibirtsevV.S., KrasnikovaL.V., SchleikinA.G., StroevS.A., NaumovI.A., OlekhnovichR.O., TereschenkoV.F., ShabanovaE.M., MussaAl-Khatib. New biotesting method with the application of modern impedance technologies. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2015, vol. 15, no. 2, pp. 275–284. (In Russian) doi: 10.17586/2226-1494-2015-15-2-275-284
16.   Sibirtsev V.S., Olekhnovich R.О., Samuylova E.О. Assessment of integral toxicity of water resources by instrumental methods of analysis. Proc. 17th Int. Multidisciplinary Scientific Geoconference, SGEM. Albena, Bulgaria, 2017, vol. 17, no. 61, pp. 507–514. doi: 10.5593/sgem2017/61/S24.066
17.   Matyusha G.V., Kartasheva T.A., Gerasimenko A.A., Samunina A.A., Sizova T.P. Strain of the fungus aspergillus flavus link as a test culture for the determination of the mushroom resistance of steels, oxide aluminum and magnesium alloys. Patent RU2535202, 1990.
18.   Kajja M. Biodegradable polymers and methods of their obtaining. Patent RU2535202, 2014.
19.   Sibirtsev V.S., Kulakov A.Yu., Stroev S.A. Conductometry biotesting as applied to valuation of the pro- and antibacterial properties of catolites and anolites. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2016, vol. 16, no. 3, pp. 573–576. (In Russian) doi: 10.17586/2226-1494-2016-16-3-573-576
20.   Sibirtsev V.S., Kuprina E., Olekhnovich R.O., Naumov I.A. Use of impedance biotesting to assess the actions of pharmaceutical compounds on the growth of microorganisms. Pharmaceutical Chemistry Journal, 2016, vol. 50, no. 7, pp. 481–485. doi: 10.1007/s11094-016-1473-3
21.   Krasnikova L.V., Sibirtsev V.S., Skobeleva I.I. Biotechnology of functional fermented milk product with different ratioes of probiotic cultures. Bulletin of St PbSIT(TU), 2016, no. 35, pp. 60–63.
22.   Averous L. Biodegradable multiphase systems based on plasticized starch. Journal of Macromolecular Science, Polymer Reviews, 2004, vol. 44, pp. 231–274. doi: 10.1081/MC-200029326
23.   Donchenko L.V., Firsov G.G. Technology of Pectin and Pectin Products. Krasnodar, KubSAU Publ., 2006, 279 p. (In Russian)
24.   Muller J., Gonzalez-Martinez C., Chiralt A. Combination of poly(lactic) acid and starch for biodegradable food packaging. Materials, 2017, vol. 10,no. 8,art. 952. doi: 10.3390/ma10080952

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.