doi: 10.17586/2226-1494-2018-18-1-106-112


ELECTRONIC DOCUMENT FLOW BETWEEN PROJECT, PRODUCTION AND OPERATING ENTERPRISES IN THE CONTEXT OF INDUSTRY 4.0 DIGITAL ECONOMY

A. V. Guryanov, A. V. Shukalov, D. A. Zakoldaev, I. O. Zharinov, V. A. Nechaev


Read the full article  ';
Article in русский

For citation: Gurjanov A.V., Shukalov A.V., Zakoldaev D.A., Zharinov I.O., Nechaev V.A. Electronic document flow between project, production and operating enterprises in the context of Industry 4.0 digital economy. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2018, vol. 18, no. 1, pp. 106–112 (in Russian). doi: 10.17586/2226-1494-2018-18-1-106-112

Abstract

 Subject of Research.We propose organizational schemesforelectronic document flow of design, program and technological documentation for instrument-making items in the companies, which run according to the rules of Industry 3.0 and according to the digital design and production rules of Industry 4.0. The most important point in the item life cycle is the exploitation documentcirculation at the stage of «designing-manufacturing-exploitation». Method.We used organization methods of project and manufacturing works for the instrument-making items production within the conditions of pilot-scale and full-scale production based on the general theory of automation design. Main Results.It is shown that the effect of the most advanced industrial technology implementation in the electronic document flow can be achieved through the application of project and manufacturing company archives based on the technologies of the Internet of things and cloud-based computing as means of technical support. The most important research result is the development of some organizational schemes for interaction between manufacturer, designer and exploiter in the view of exploitation documentation for the instrument-making item usage. Practical Relevance.The results of this research can be implemented  for the creation of instrument-making (machine manufacturing) automation design algorithms for digital production, operating within the conditions of Industry 4.0 digital economy. The presented organizational schemes of the electronic exploitation document flow can be reasonably implemented for the practice of situational support in the exploitation of instrument-making items


Keywords: electronic document flow, exploitation documentation, Industry 3.0, Industry 4.0

References
 1.      Theorin A., Bengtsson K., Provost J., Lieder M., Johnsson Ch., Lundholm Th. An event-driven manufacturing information system architecture for Industry 4.0. International Journal of Production Research, 2017, vol. 55, no. 5, pp.1297–1311. doi: 10.1080/00207543.2016.1201604
2.      Liao Y., Deschamps S., Loures E.F.R., Ramos L.F.P. Past, present and future of Industry 4.0 – a systematic literature review and research agenda proposal. International Journal of Production Research, 2017, vol. 55, no. 12, pp. 3609–3629. doi: 10.1080/00207543.2017.1308576
3.      Wang Sh., Wan J., Li D., Zhang Ch. Implementing smart factory of Industrie 4.0: an outlook. International Journal of Distributed Sensor Networks, 2016, art. 3159805. doi: 10.1155/2016/3159805
4.      Jung K., Choi S.S., Kulvatunyou B., Cho H., Morris K.S. A reference activity model for smart factory design and improvement. Production Planning and Control, 2017, vol. 28, no. 2, pp. 108–122. doi: 10.1080/09537287.2016.1237686
5.      Fischer Th., Ruhland J. Scalable planning in the semantic web – a smart factory assembly line balancing example. Proc. Int. Conf. on Web Intelligence. Atlanta, USA, 2013,vol. 1, pp. 221–226. doi: 10.1109/WI-IAT.2013.32
6.      Shpilevoy V., Shishov A., Skobelev P., Kolbova E., Kazanskaia D., Shepilov Ya., Tsarev А. Multi-agent system «Smart factory» for real-time workshop management in aircraft jet engines production. IFAC Proceedings Volumes, 2013, vol. 46, no. 7, pp. 204–209. doi: 10.3182/20130522-3-BR-4036.00025
7.      Radziwon A., Bilberg A., Bogers M., Madsen E.S. The smart factory: exploring adaptive and flexible manufacturing solutions. Procedia Engineering, 2014, vol. 69, pp. 1184–1190. doi: 10.1016/j.proeng.2014.03.108
8.      Silva F., Gamarra C.J., Araujo Jr.A.H., Leonardo J. Product lifecycle management, digital factory and virtual commissioning: analysis of these concepts as a new tool of lean thinking. Proc. Int. Conf. on Industrial Engineering and Operations Management. Dubai, 2015, pp. 911–915.
9.      Lavrin A., Zelko M. Moving toward the digital factory in raw material resources area. Acta Montanistica Slovaca, 2010, vol. 15, no. 3, pp. 225–231.
10.   Schuh G., Anderl R., Gausemeier J., ten Hompel M., Wahlster W. Industrie 4.0 Maturity Index. Managing the Digital Transformation of Companies. Munich, Herbert Utz Verlag, 2017, 60 p.
11.   Hwang G., Lee J., Park J., Chang T.-W. Developing performance measurement system for Internet of Things and smart factory environment. International Journal of Production Research, 2017, vol. 55, no. 9, pp. 2590–2602. doi: 10.1080/00207543.2016.1245883
12.   Qu T., Thurer M., Wang J., Wang Z., Fu H., Li C. System dynamics analysis for an Internet-of-Things-enabled production logistics system. International Journal of Production Research, 2017, vol. 55, no. 9, pp. 2622–2649. doi: 10.1080/00207543.2016.1173738
13.   Zuehlke D. SmartFactory – towards a factory-of-things. Annual Reviews in Control, 2010, vol. 34, no. 1, pp. 129–138. doi: 10.1016/j.arcontrol.2010.02.008


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика