doi: 10.17586/2226-1494-2019-19-2-196-201


LIGHT PROPAGATION IN PLANAR TOTAL INTERNAL REFLECTION WAVEGUIDE WITH QUANTUM WELL

A. A. Pervishko


Read the full article  ';
Article in Russian

For citation:
Pervishko A.A. Light propagation in planar total internal reflection waveguide with quantum well. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2019, vol. 19, no. 2,  pp. 196–201 (in Russian). doi: 10.17586/2226-1494-2019-19-2-196-201


Abstract
The paper presents theoretical study of an electromagnetic wave propagation in a planar total internal reflection waveguide with a centrally located quantum well. The calculation is based on transfer matrix method application that gives the possibility to describe the propagation of light in layered structures and calculate the reflection spectrum having related it with the eigenmodes of the system. The prediction is made that the interaction appears between the excitons of the quantum well and the electromagnetic wave in the form of the anticrossing in the reflection spectrum. This behavior is a characteristic feature of such quasiparticles as exciton-polaritons. It is predicted that the value of the Rabi splitting is about several millielectronvolts for exciton-polaritons in the total internal reflection waveguide with a GaAs quantum well. It is also shown that the interaction between the excitons of the quantum well and TE and TM polarized electromagnetic waves is different that can be seen in the reflection spectrum of the structure and agrees with the optical selection rules. As a result, the alternative exciton-polariton system is proposed, which in return can be used in the modern semiconductor industry as a system for information transfer.

Keywords: planar total internal reflection waveguide, anti-crossing effect, exciton-polariton, Rabi splitting

Acknowledgements. The project has been performed at ITMO University as a co-financing of the project 418231 from the centralized funds of ITMO University.

References
1.Thompson S.E., Parthasarathy S. Moore’s law: the future of Si microelectronics. Materials Today, 2006, vol. 9, no. 6, pp. 20–25.doi: 10.1016/S1369-7021(06)71539-5
2.Luryi S., Xu J., Zaslavsky A. Future Trends in Microelectronics: Reflections on the Road to Nanotechnology. Dordrecht, Kluwer Academic Publishers, 1996, 420 p. doi: 10.1007/978-94-009-1746-0
3.Cabrera J.M., Agullo-Rueda F. Electrooptics: Phenomena, Materials and Applications. London, Academic Press, 2012, 345 p. doi: 10.1016/C2009-0-21166-4
4.Lambrechts W., Sinha S., Abdallah J., Prinsloo J. Extending Moore’s law through advanced semiconductor design and processing techniques. Boca Raton, CRC Press, 2018, 366 p. doi: 10.1201/9781351248679
5.Mahmoud S.F. Electromagnetic Waveguides: Theory and Applications. London, Peter Peregrinus, 1991, 240 p.
6.Suhara T., Fujimura M. Waveguide Nonlinear-Optic Devices. Berlin, Springer, 2003, 321 p. doi: 10.1007/978-3-662-10872-7
7.Dutta A., Deka B., Sahu P.P. Planar Waveguide Optical Sensors: From Theory to Applications. Basel, Springer, 2016, 179 p. doi: 10.1007/978-3-319-35140-7
8.Rarity J.G., Weisbuch C. Microcavities and Photonic Bandgaps: Physics and Applications. Dordrecht, Kluwer Academic Publishers, 1996, 601 p. doi: 10.1007/978-94-009-0313-5
9.Yokoyama H. Physics and device applications of optical microcavities. Science, 1992, vol. 256, no. 5053, pp. 66–70. doi: 10.1126/science.256.5053.66
10.Wade J.H., Bailey R.C. Applications of optical microcavity resonators in analytical chemistry. Annual Review of Analytical Chemistry, 2016, vol. 9, pp. 1–25. doi: 10.1146/annurev-anchem-071015-041742
11.Michalzik R. VCSELs: Fundamentals, Technology and Applications of Vertical-Cavity Surface Emitting Lasers. Berlin, Springer, 2013, 560 p. doi: 10.1007/978-3-642-24986-0
12.Walker P.M., Tinkler L., Durska M., Whittaker D.M., Luxmoore I.J., Royall B., Krizhanovskii D.N., Skolnick M.S., Farrer I. and Ritchie D.A. Exciton polaritons in semiconductor waveguides. Applied Physics Letters, 2013, vol. 102, no. 1, art. 012109. doi: 10.1063/1.4773590
13.Kavokin A.V., Baumberg J.J., Malpuech G., Laussy F.P. Microcavities. New York, Oxford University Press, 2011, 440 p. doi: 10.1093/oso/9780198782995.001.0001
14.Weisbuch C., Nishioka M., Ishikava A., Arakawa Y. Observation of the coupled exciton-polariton mode splitting in a semiconductor quantum microcavity. Physical Review Letters, 1992, vol. 69, no. 23, pp. 3314–3317. doi: 10.1103/PhysRevLett.69.3314
15.Kavokin A. Exciton-polaritons in microcavities: present and future. Applied Physics A, 2007, vol. 89, no. 2, pp. 241–246. doi:10.1007/s00339-007-4145-z
16.Deng H., Weihs G., Snoke D., Bloch J., Yamamoto Y. Polariton lasing vs. photon lasing in a semiconductor microcavity. Proc. National Academy of Science USA, 2003, vol. 100, no. 26, pp. 15318–15323. doi: 10.1073/pnas.2634328100
17.Schneider C., Rahimi-Iman A., Kim N.Y., Fischer J., Savenko I.G., Amthor M., Lermer M., Wolf A., Worschech L., Kulakovskii V.D., Shelykh I.A., Kamp M., Reitzenstein S., Forchel A., Yamamoto Y., Höfling S. An electrically pumped polariton laser. Nature, 2013, vol. 497, pp. 348–352. doi: 10.1038/nature12036
18.Christopoulos S., von Hogersthal G.B., Grundy A.J., Lagoudakis P.G.,Kavokin A.V., Baumberg, J.J., Christmann G., Butte R., Feltin E., Carlin J.-F., Grandjean N. Room-temperature polariton lasing in semiconductor microcavities. Physical Review Letters, 2007, vol. 98, no. 12, art. 126405. doi: 10.1103/PhysRevLett.98.126405
19.KavokinA. Polariton diode microcavities. Nature Photonics, 2009, vol. 3, no. 3, pp. 135–136. doi: 10.1038/nphoton.2009.17
20.Gao T., Eldridge P.S., Liew T.C.H., Tsintzos S.I., Stavrinidis G., Deligeorgis G., Hatzopoulos Z., Savvidis P.G. Polariton condensate transistor switch. Physical Review B, 2012, vol. 85, no. 23, art. 235102. doi: 10.1103/PhysRevB.85.235102
21.Ballarini D., De Giorgi M., Cancellieri E., Houdré R., Giacobino E., Cingolani R., Bramati A., Gigli G., Sanvitto D. All-optical polariton transistor. Nature Communications, 2013, vol. 4, art. 1778.doi: 10.1038/ncomms2734
22.Shapochkin P. Yu., Lozhkin M.S., Solovev I.A., Lozhkina O.A., Efimov Yu.P., Eliseev S.A., Lovcjus V.A., Kozlov G.G., Pervishko A.A., Krizhanovskii D.N., Walker P.M., Shelykh I.A., Skolnick M.S., Kapitonov Yu.V. Polarization-resolved strong light–matter coupling in planar GaAs/AlGaAs waveguides. Optics Letters, 2018,vol. 43, no. 18, pp. 4526–4529. doi: 10.1364/OL.43.004526
23.Lowen E.G., Popov E. Diffraction Gratings and Applications. New York, Marcel Dekker, 1997, 601 p.
24.Wang S.S., Magnusson R. Multilayer waveguide-grating filters. Applied Optics, 1995, vol. 34, no. 14, pp. 2414–2420. doi: 10.1364/AO.34.002414
25.Born M., Wolf E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Oxford, Pergamon Press, 1964, 952 p.
26.Ivchenko E.L., Kavokin A.V. Reflection of light from structures with quantum wells, quantum wires, and quantum dots. Solid State Physics, 1992, vol. 34, no. 6, p. 968.
27.Andreani L.C. Exciton-polaritons in superlattices. Physics Letters A, 1994, vol. 192, no. 1, pp. 99–109. doi:
10.1016/0375-9601(94)91023-5
28.Savona V., Andreani L.C., Schwendimann P., Quattopani A. Quantum well excitons in semiconductor microcavities: unified treatment of weak and strong coupling regimes. Solid State Communications, 1995, vol. 93, no. 9, pp. 733–739. doi: 10.1016/0038-1098(94)00865-5
29.Ivchenko E.L. Optical Spectroscopy of Semiconductor Nanostructures. Harrow, Alpha Science, 1995, 421 p.
30.Numai T. Fundamentals of Semiconductor Lasers. Tokyo, Springer, 2014, 268 p. doi: 10.1007/b97531
31.Lockwood D.J., Pinczuk A. Optical Phenomena in Semiconductor Structures of Reduced Dimensions. Dordrecht, Springer, 2014, 454 p. doi: 10.1007/978-94-011-1912-2
32.Vladimirova M.R., Kavokin A.V., Kaliteevski M.A. Dispersion of bulk exciton polaritons in a semiconductor microcavity. Physical Review B, 1996, vol. 54, no. 20, pp. 14566–14571 doi: 10.1103/PhysRevB.54.14566


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика