doi: 10.17586/2226-1494-2019-19-2-196-201


УДК 535.3, 535-7

РАСПРОСТРАНЕНИЕ СВЕТА В ПЛОСКОМ ВОЛНОВОДЕ ПОЛНОГО ВНУТРЕННЕГО ОТРАЖЕНИЯ С КВАНТОВОЙ ЯМОЙ

Первишко А.А.


Читать статью полностью 
Язык статьи - русский

Ссылка для цитирования:

Первишко А.А. Распространение света в плоском волноводе полного внутреннего отражения с квантовой ямой // Научно-технический вестник информационных технологий, механики и оптики. 2019. Т. 19. № 2. С. 196–201. doi: 10.17586/2226-1494-2019-19-2-196-201



Аннотация

Исследован процесс распространения электромагнитной волны в волноводе полного внутреннего отражения с квантовой ямой, помещенной в его центр. Использован метод матриц переноса, позволяющий описать распространение света в слоистых структурах и рассчитать спектр отражения, связав его с собственными модами системы. Предсказано взаимодействие экситонов квантовой ямы и электромагнитной волны в виде антипересечения в спектре отражения рассматриваемой структуры, что является характерной особенностью для таких квазичастиц, как экситон-поляритоны. Полученная величина расщепления Раби составляет несколько миллиэлектронвольт для экситон-поляритонов в волноводе полного внутреннего отражения с GaAs квантовой ямой. Показано, что взаимодействие между экситонами квантовой ямы и электромагнитными волнами TE- и TM-поляризаций различно, это можно наблюдать в спектре отражения исследуемой структуры. Такое различие соответствует оптическим правилам отбора. Предложенная альтернативная микрорезонаторам система, в которой могут наблюдаться экситон-поляритоны, может быть использована в полупроводниковой индустрии для передачи информации.


Ключевые слова: плоский волновод полного внутреннего отражения, эффект антипересечения, экситон-поляритон, расщепление Раби

Благодарности. Работа выполнена в Университете ИТМО в рамках софинансирования проекта 418231 из централизованных средств Университета ИТМО.

Список литературы
1.Thompson S.E., Parthasarathy S. Moore’s law: the future of Si microelectronics // Materials Today. 2006. V. 9. N 6. P. 20–25.doi: 10.1016/S1369-7021(06)71539-5
2.Luryi S., Xu J., Zaslavsky A. Future Trends in Microelectronics: Reflections on the Road to Nanotechnology. Dordrecht, Kluwer Academic Publishers, 1996. 420 p. doi: 10.1007/978-94-009-1746-0
3.Cabrera J.M., Agullo-Rueda F. Electrooptics: Phenomena, Materials and Applications. London, Academic Press, 2012. 345 p. doi: 10.1016/C2009-0-21166-4
4.Lambrechts W., Sinha S., Abdallah J., Prinsloo J. Extending Moore’s law through advanced semiconductor design and processing techniques. Boca Raton, CRC Press, 2018. 366 p. doi: 10.1201/9781351248679
5.Mahmoud S.F. Electromagnetic Waveguides: Theory and Applications. London, Peter Peregrinus, 1991. 240 p.
6.Suhara T., Fujimura M. Waveguide Nonlinear-Optic Devices. Berlin, Springer, 2003. 321 p. doi: 10.1007/978-3-662-10872-7
7.Dutta A., Deka B., Sahu P.P. Planar Waveguide Optical Sensors: From Theory to Applications. Basel, Springer, 2016. 179 p. doi: 10.1007/978-3-319-35140-7
8.Rarity J.G., Weisbuch C. Microcavities and Photonic Bandgaps: Physics and Applications. Dordrecht, Kluwer Academic Publishers, 1996. 601 p. doi: 10.1007/978-94-009-0313-5
9.Yokoyama H. Physics and device applications of optical microcavities // Science. 1992. V. 256. N 5053. P. 66–70. doi: 10.1126/science.256.5053.66
10.Wade J.H., Bailey R.C. Applications of optical microcavity resonators in analytical chemistry // Annual Review of Analytical Chemistry. 2016. V. 9. P. 1–25. doi: 10.1146/annurev-anchem-071015-041742
11.Michalzik R. VCSELs: Fundamentals, Technology and Applications of Vertical-Cavity Surface Emitting Lasers. Berlin, Springer, 2013. 560 p. doi: 10.1007/978-3-642-24986-0
12.Walker P.M., Tinkler L., Durska M., Whittaker D.M., Luxmoore I.J., Royall B., Krizhanovskii D.N., Skolnick M.S., Farrer I. and Ritchie D.A. Exciton polaritons in semiconductor waveguides // Applied Physics Letters. 2013. V. 102. N 1. Art. 012109. doi: 10.1063/1.4773590
13.Kavokin A.V., Baumberg J.J., Malpuech G., Laussy F.P. Microcavities. New York, Oxford University Press, 2011. 440 p. doi: 10.1093/oso/9780198782995.001.0001
14.Weisbuch C., Nishioka M., Ishikava A., Arakawa Y. Observation of the coupled exciton-polariton mode splitting in a semiconductor quantum microcavity // Physical Review Letters. 1992. V. 69. N 23. P. 3314–3317. doi: 10.1103/PhysRevLett.69.3314
15.Kavokin A. Exciton-polaritons in microcavities: present and future // Applied Physics A. 2007. V. 89. N 2. P. 241–246. doi:10.1007/s00339-007-4145-z
16.Deng H., Weihs G., Snoke D., Bloch J., Yamamoto Y. Polariton lasing vs. photon lasing in a semiconductor microcavity // Proc. National Academy of Science USA. 2003. V. 100. N 26. P. 15318–15323. doi: 10.1073/pnas.2634328100
17.Schneider C., Rahimi-Iman A., Kim N.Y., Fischer J., Savenko I.G., Amthor M., Lermer M., Wolf A., Worschech L., Kulakovskii V.D., Shelykh I.A., Kamp M., Reitzenstein S., Forchel A., Yamamoto Y., Höfling S. An electrically pumped polariton laser // Nature. 2013. V. 497. P. 348–352. doi: 10.1038/nature12036
18.Christopoulos S., von Hogersthal G.B., Grundy A.J., Lagoudakis P.G., Kavokin A.V., Baumberg, J.J., Christmann G., Butte R., Feltin E., Carlin J.-F., Grandjean N. Room-temperature polariton lasing in semiconductor microcavities // Physical Review Letters. 2007. V. 98. N 12. Art. 126405. doi: 10.1103/PhysRevLett.98.126405
19.KavokinA. Polariton diode microcavities // Nature Photonics. 2009. V. 3. N 3. P. 135–136. doi: 10.1038/nphoton.2009.17
20.Gao T., Eldridge P.S., Liew T.C.H., Tsintzos S.I., Stavrinidis G., Deligeorgis G., Hatzopoulos Z., Savvidis P.G. Polariton condensate transistor switch // Physical Review B. 2012. V. 85. N 23. Art. 235102. doi: 10.1103/PhysRevB.85.235102
21.BallariniD., De GiorgiM., CancellieriE., HoudréR., GiacobinoE., CingolaniR., BramatiA., GigliG., SanvittoD. All-optical polariton transistor // Nature Communications. 2013. V. 4. Art. 1778.doi: 10.1038/ncomms2734
22.Shapochkin P.Yu., Lozhkin M.S., Solovev I.A., Lozhkina O.A., Efimov Yu.P., Eliseev S.A., Lovcjus V.A., Kozlov G.G., Pervishko A.A., Krizhanovskii D.N., Walker P.M., Shelykh I.A., Skolnick M.S., Kapitonov Yu.V. Polarization-resolved strong light–matter coupling in planar GaAs/AlGaAs waveguides // Optics Letters. 2018.V. 43. N 18.
P. 4526–4529. doi: 10.1364/OL.43.004526
23.Lowen E.G., Popov E. Diffraction Gratings and Applications. New York, Marcel Dekker, 1997. 601 p.
24.Wang S.S., Magnusson R. Multilayer waveguide-grating filters // Applied Optics. 1995. V. 34. N 14. P. 2414–2420. doi: 10.1364/AO.34.002414
25.Born M., Wolf E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Oxford, Pergamon Press, 1964. 952 p.
26.Ивченко Е.Л., Кавокин А.В. Отражение света от структур с квантовыми ямами, квантовыми проводами и квантовыми точками // Физика твердого тела. 1992. Т. 34. № 6. С. 1815–1822.
27.Andreani L.C. Exciton-polaritons in superlattices // Physics Letters A. 1994. V. 192. N 1. P. 99–109. doi:
10.1016/0375-9601(94)91023-5
28.Savona V., Andreani L.C., Schwendimann P., Quattopani A. Quantum well excitons in semiconductor microcavities: unified treatment of weak and strong coupling regimes // Solid State Communications. 1995. V. 93. N 9. P. 733–739. doi: 10.1016/0038-1098(94)00865-5
29.Ivchenko E.L. Optical Spectroscopy of Semiconductor Nanostructures. Harrow, Alpha Science, 1995. 421 p.
30.Numai T. Fundamentals of Semiconductor Lasers. Tokyo, Springer, 2014. 268 p. doi: 10.1007/b97531
31.Lockwood D.J., Pinczuk A. Optical Phenomena in Semiconductor Structures of Reduced Dimensions. Dordrecht, Springer, 2014. 454 p. doi: 10.1007/978-94-011-1912-2
32.Vladimirova M.R., Kavokin A.V., Kaliteevski M.A. Dispersion of bulk exciton polaritons in a semiconductor microcavity // Physical Review B. 1996. V. 54. N 20. P. 14566–14571 doi: 10.1103/PhysRevB.54.14566
 



Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Информация 2001-2024 ©
Научно-технический вестник информационных технологий, механики и оптики.
Все права защищены.

Яндекс.Метрика