doi: 10.17586/2226-1494-2020-20-2-206-222


CURRENT TRENDS IN DEVELOPMENT AND PRODUCTION OF NANOSCALE DRUG DELIVERY SYSTEMS

E. V. Popova, P. P. Beltyukov, A. S. Radilov


Read the full article  ';
Article in Russian

For citation:
Popova E.V., Beltyukov P.P., Radilov A.S. Current trends in development and production of nanoscale drug delivery systems. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2020, vol. 20, no. 2, pp. 206–222 (in Russian). doi: 10.17586/2226-1494-2020-20-2-206-222


Abstract
Development of drug delivery systems is one of the high-priority areas in pharmaceutical technologies. Currently, most of the largest pharmaceutical companies are developing delivery systems, both for new drugs and for already existing ones. Oncology has been and still remains one of the leading application areas for these systems. A variety of problems to be solved in the development of delivery systems has led to the emergence of numerous options for such systems. Each of these options has its pros and cons. The specificity of drug delivery systems and their diversity has led to the necessity of information systematization about their physical and technological characteristics and applicability in clinical practice. This review generalizes and systematizes information about modern targeted delivery systems for medicinal compounds with low bioavailability that is described in the scientific literature and is used in modern pharmaceutical technology. Particular importance is given to the trends of nanoscale delivery systems development for various therapeutic drugs that can penetrate protective barriers of body, achieve sustained controlled release, and are also promising for delivery to target cells. Nanoscale drug delivery systems have higher potential for pharmaceutical and medical industries. The following nanoscale systems for drug delivery were identified: nanoemulsions, nanocapsules, nanoliposomes (including exosomes, virosomes, and other modifications of traditional liposomes), dendrimers, and carriers based on cells and peptides. Their main technological and pharmacological characteristics were given, and the prospects for their clinical use were considered. The base methods of each drug delivery systems formation were also described. It has been shown that the interest in modifications of liposomal systems (exasoms) as well as in dendrimers and cell-based delivery systems increases every year.

Keywords: liposomes, erythrocytes, cell-penetrating peptides, nanocapsules, nanoemulsions, dendrimers

References
1.        Jain K.K. Drug delivery systems - an overview. Drug Delivery Systems, Humana Press, 2008, pp. 1­50. (Methods in Molecular Biology; vol. 437).
2.        Calzoni E., Cesaretti A., Polchi A., Di Michelle A., Tancini B., Emiliani C. Biocompatible polymer nanoparticles for drug delivery applications in cancer and neurodegenerative disorder therapies. Journal of Functional Biomaterials, 2019, vol. 10, no. 4, pp. 4. doi:10.3390/jfb10010004
3.        Singh A.P., Biswas A., Shukla A., Maiti P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduction and Targeted Therapy, 2019, vol. 4, pp. 1–14. doi: 10.1038/s41392-019-0068-3
4.        Lombardo D., Kiselev M., Caccamo M.T. Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. Journal of Nanomaterials, 2019, pp. 3702518. doi: 10.1155/2019/3702518
5.        Anselmo A.C., Mitragotri S. An overview of clinical and commercial impact of drug delivery systems. Journal of Controlled Release, 2014, vol. 190, pp. 15–28. doi: 10.1016/j.jconrel.2014.03.053
6.        Madaan T., Pandey S., Talegaonkar S. Nanotechnology: A smart drug delivery tool in modern healthcare. Journal of Chemical and Pharmaceutical Research, 2015, vol. 7, no. 6, pp. 257–264.
7.        Patra J.K., Das G., Fraceto L.F., Ramos Campos E.V., Rodriguez-Torres M.D.P., Acosta-Torres L.S., Diaz-Torres L.A., Grillo R., Swamy M.K., Sharma S., Habtemariam S., Shin H.-S. Nano based drug delivery systems: recent developments and future prospects. Journal of Nanobiotechnology, 2018, vol. 16, pp. 71. doi: 10.1186/s12951-018-0392-8
8.        Shinkar D.M., Paralkar P.S., Saudagar R.B. An overview on trends and developments in liposome – as drug delivery system. Asian Journal of Pharmacy and Technology, 2015, vol. 5, no. 4, pp. 231–237. doi: 10.5958/2231-5713.2015.00033.1
9.        Maurer N., Fenske D.B., Cullis P.R. Developments in liposomal drug delivery systems. Liposome and Nanotechnology, 2017, pp. 77–97.
10.    Alekseev K.V., Kedik S.A. Pharmaceutical Technology. Moscow, IPT Publ., 2019, 570 p. (in Russian)
11.    Alekseev K.V., Kedik S.A., Blynskaia E.V. Pharmaceutical Nanotechnology. Moscow, IPT Publ., 2016, 544 p. (in Russian)
12.    Banerjee K., Banerjee S., Mandal M. Liposomes as a drug delivery system. Biological and Pharmaceutical Applications of Nanomaterials, 2015, pp. 53–100. doi: 10.1201/b18654-5
13.    Zylberberg C., Matosevic S. Pharmaceutical liposomal drug delivery: a review of new delivery systems and a look at the regulatory landscape. Drug Delivery, 2016, vol. 23, no. 9, pp. 3319–3329. doi: 10.1080/10717544.2016.1177136
14.    Milani D., Athiyah U., Hariyadi D.M., Pathak Y.V. Surface Modifications of Liposomes for Drug Targeting. Surface Modification of Nanoparticles for Targeted Drug Delivery, Springer, 2019, pp. 207­220. doi: 10.1007/978-3-030-06115-9_11
15.    Amiri S., Ghanbarzadeh B., Hamishehkar H., Hosein M., Babazadeh A., Adun P. Vitamin E loaded nanoliposomes: effects of gammaoryzanol, polyethylene glycol and lauric acid on physicochemical properties. Colloid and Interface Science Communications, 2018, vol. 26, pp. 1–6. doi: 10.1016/j.colcom.2018.07.003
16.    Furuhashi H., Tomita K., Teratani T., Shimizu M., Nishikawa M., Higashiyama M., Takajo T., Shirakabe K., Maruta K., Okada Y., Kurihara C., Watanabe C., Komoto S., Aosasa S., Nagao S., Yamamoto J., Miura S., Hokari R. Vitamin A-coupled liposome system targeting free cholesterol accumulation in hepatic stellate cells offers a beneficial therapeutic strategy for liver fibrosis. Hepatology Research, 2018, vol. 48, no. 5, pp. 397–407. doi: 10.1111/hepr.13040
17.    Madni A., Sarfraz M., Rehman M., Ahmad M., Akhtar N., Ahmad S., Tahir N., Ijaz S., Al-Kassas R., Löbenberg R. Liposomal drug delivery: A versatile platform for challenging clinical applications. Journal of Pharmacy and Pharmaceutical Sciences, 2014, vol. 17, no. 3, pp. 401–426. doi: 10.18433/J3CP55
18.    Gabizon A., Shmeeda H., Barenholz Y. Pharmacokinetics of pegylated liposomal doxorubicin: Review of animal and human studies. Clinical Pharmacokinetics, 2003, vol. 42, no. 5, pp. 419–436. doi: 10.2165/00003088-200342050-00002
19.    New R.R.C., Chance M.L., Heath S. Antileishmanial activity of amphotericin and other antifungal agents entrapped in liposomes. Journal of Antimicrobial Chemotherapy, 1981, vol. 8, no. 5, pp. 371–381. doi: 10.1093/jac/8.5.371
20.    Wasungu L., Hoekstra D. Cationic lipids, lipoplexes and intracellular delivery of genes. Journal of Controlled Release, 2006, vol. 116, no. 2(spec.iss.), pp. 255–264. doi: 10.1016/j.jconrel.2006.06.024
21.    Xu Y., Hui S.-W., Frederik P., Szoka F.C. Physicochemical characterization and purification of cationic lipoplexes. Biophysical Journal, 1999, vol. 77, no. 1, pp. 341–353. doi: 10.1016/S0006-3495(99)76894-3
22.    Huang S.-L., McDonald R. Acoustically active liposomes for drug encapsulation and ultrasound-triggered release. BBA-Biomembranes, 2004, vol. 1665, no. 1-2, pp. 134–141. doi: 10.1016/j.bbamem.2004.07.003
23.    Grüll H., Langereis S. Hyperthermia-triggered drug delivery from temperature-sensitive liposomes using MRI-guided high intensity focused ultrasound. Journal of Controlled Release, 2012, vol. 161, no. 2, pp. 317–327. doi: 10.1016/j.jconrel.2012.04.041
24.    Shum P., Kim J.-M., Thompson D.H. Phototriggering of liposomal drug delivery systems. Advances Drug Delivery Reviews, 2001, vol. 53, no. 3, pp. 273–284. doi: 10.1016/S0169-409X(01)00232-0
25.    Faria M.R. Development and characterization of magnetoliposomes for drug delivery applications. Liposome and Nanotechnology, 2017, pp. 143–167.
26.    Rajera R., Nagpal K., Singh S.K., Mishra D.N. Niosomes: a controlled and novel drug delivery system. Biological and Pharmaceutical Bulletin, 2011, vol. 34, no. 7, pp. 945–953. doi: 10.1248/bpb.34.945
27.    Aditya S., Lakhvinder K., Prevesh K., Neelkant P., Vaibhav R. Niosomes: a promising approach in drug delivery systems. Journal of Drug Delivery and Therapeutics, 2019, vol. 9, no. 4, pp. 635–642. doi: 10.22270/jddt.v9i4.3064
28.    Madhav N.V.S., Saini. A. Niosomes: a novel drug delivery system. International Journal of Research in Pharmacy and Chemistry, 2011, vol. 1, no. 3, pp. 498–510.
29.    More V.V., Gilhotra R.M., Nitalikar M.M., Khule P.K. Niosomal drug delivery - A comprehensive review. Asian Journal of Pharmaceutics, 2018, vol. 12, no. 4, pp. 1159–1165.
30.    Pardakhty A., Moazeni E. Nano-niosomes in drug, vaccine and gene delivery: a rapid overview. Nanomedicine Journal, 2013, vol. 1, no. 1, pp. 1–12. doi: 10.22038/nmj.2013.697
31.    Sankhyan A., Pawar P. Recent trends in niosome as vesicular drug delivery system. Journal of Applied Pharmaceutical Science, 2012, vol. 2, no. 6, pp. 20–32. doi: 10.7324/JAPS.2012.2625
32.    Moghassemi S., Hadjizadeh A. Nano-niosomes as nanoscale drug delivery systems: An illustrated review. Journal of Controlled Release, 2014, vol. 185, no. 1, pp. 22–36. doi: 10.1016/j.jconrel.2014.04.015
33.    Sprott G.D. Structures of archaebacterial membrane lipids. Journal of Bioenergetics and Biomembranes, 1992, vol. 24, no. 6, pp. 555–566. doi: 10.1007/BF00762348
34.    Li Z., Zhang L., Sun W., Ding Q., Hou Y., Xu Y. Archaeosomes with encapsulated antigens for oral vaccine delivery. Vaccine, 2011, vol. 29, no. 32, pp. 5260–5266. doi: 10.1016/j.vaccine.2011.05.015
35.    Postma E.D. Liposomes or Archaesomes: A New Vaccine Delivery System? Bachelor Thesis, Moleculaire Microbiologie, 2014, 24 p.
36.    Zavec A.B., Ota A., Zupancic T., Komel R., Ulrih N.P., Liovic M. Archaeosomes can efficiently deliver different types of cargo into epithelial cells grown in vitro. Journal of Biotechnology, 2014, vol. 192, Part 1, pp. 130–135. doi: 10.1016/j.jbiotec.2014.09.015
37.    Patel G.B., Agnew B.J., Deschatelets L., Fleming L.P., Sprott G.D. In vitro assessment of archaesome stability for developing oral delivery systems. Liposomes and Nanotechnology, 2017, pp. 11–19.
38.    Li Z., Chen J., Sun W., Xu Y. Investigation of archaeosomes as carriers for oral delivery of peptides. Biochemical and Biophysical Research Communications, 2010, vol. 394, no. 2, pp. 412–417. doi: 10.1016/j.bbrc.2010.03.041
39.    Rao B.N., Reddy K.R., Mounika B., Fathima S.R., Tejaswini A. Vesicular drug delivery system: a review. International Journal of ChemTech Research, 2019, vol. 12, no. 5, pp. 39–53. doi: 10.20902/IJCTR.2019.120505
40.    Dave V., Kumar D., Lewis S., Paliwal S. Ethosome for enhanced transdermal drug delivery of aceclofenac. International Journal of Drug Delivery, 2010, vol. 2, no. 1, pp. 81–92. doi: 10.5138/ijdd.2010.0975.0215.02016
41.    Nandure H.P., Puranik P., Giram P., Lone V. Ethosome: A novel drug carrier. International Journal of Pharmaceutical Research and Allied Sciences, 2013, vol. 2, no. 3, pp.  18–30.
42.    Muller L., Hong C.-S., Stolz D.B., Watkins S.C., Whiteside T.L. Isolation of biologically-active exosomes from human plasma. Journal of Immunological Methods, 2014, vol. 411, pp. 55–65. doi: 10.1016/j.jim.2014.06.007
43.    Munagala R., Aqil F., Jeyabalan J., Gupta R.C. Bovine milk-derived exosomes for drug delivery. Cancer Letters, 2016, vol. 371, no. 1. P. 48–61. doi: 10.1016/j.canlet.2015.10.020
44.    Zeringer E., Barta T., Li M., Vlasov A. Strategies for isolation of exosomes. Cold Spring Harbor Protocols, 2015, no. 4, pp. 319–323. doi: 10.1101/pdb.top074476
45.    Yang T., Martin P., Fogarty B., Brown A., Schurman K., Phipps R., Yin V.P., Lockman P., Bai S. Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio Rerio. Pharmaceutical Research, 2015, vol. 32, no. 6, pp. 2003–2014.doi: 10.1007/s11095-014-1593-y
46.    Farah F., Nawaz M. Stem cell-derived exosomes: roles in stromal remodeling, tumor progression, and cancer immunotherapy. Chinese Journal of Cancer, 2015, vol. 34, no. 12, pp. 541–553. doi: 10.1186/s40880-015-0051-5
47.    Helwa I., Cai J., Drewry M.D., Zimmerman A., Dinkins M.B., Khaled M.L., Seremwe M., Dismuke W.M., Bieberich E., Stamer W.D., Hamrick M.W., Liu Y. A comparative study of serum exosome isolation using differential ultracentrifugation and three commercial reagents. PLoS ONE, 2017, vol. 12, no. 1, pp. e0170628. doi: 10.1371/journal.pone.0170628
48.    Yamashita T., Takahashi Y., Nishikawa M., Takakura Y. Effect of exosome isolation methods on physicochemical properties of exosomes and clearance of exosomes from the blood circulation. European Journal of Pharmaceutics and Biopharmaceutics, 2016, vol. 98, pp. 1–8. doi: 10.1016/j.ejpb.2015.10.017
49.    Aqil F., Munagala R., Jeyabalan J., Agrawal A.K., Gupta R.C.Exosomes for the enhanced tissue bioavailability and efficacy of curcumin. AAPS Journal, 2017, vol. 19, no. 6, pp. 1691–1702. doi: 10.1208/s12248-017-0154-9
50.    Lin Y., Wu J., Gu W., Huang Y., Tong Z., Huang L., Tan J. Exosome–liposome hybrid nanoparticles deliver CRISPR/Cas9 system in MSCs. Advanced Science, 2018, vol. 5, no. 4, pp. 1700611. doi: 10.1002/advs.201700611
51.    Haney M.J., Klyachko N.L., Zhao Y., Gupta R., Plotnikova E.G., He Z., Patel T., Piroyan A., Sokolsky M., Kabanov A.V., Batrakova E.V. Exosomes as drug delivery vehicles for Parkinson's disease therapy. Journal of Controlled Release, 2015, vol. 207, pp. 18–30. doi: 10.1016/j.jconrel.2015.03.033
52.    Derdak S.V., Kueng H.J., Leb V.M., Neunkirchner A., Schmetterer K.G., Bielek E., Majdic O., Knapp W., Seed B., Pickl W.F. Direct stimulation of T lymphocytes by immunosomes: Virus-like particles decorated with T cell receptor/CD3 ligands plus costimulatory molecules. PNAS, 2006, vol. 103, no. 35, pp. 13144–13149. doi: 10.1073/pnas.0602283103
53.    Singh N., Gautam S.P., Kumari N., Kaur R., Kaur M. Virosomes as novel drug delivery system: an overview. PharmaTutor, 2017, vol. 5, no. 9, pp. 47–55.
54.    Liu H., Tu Z., Feng F., Shi H., Chen K., Xu X. Virosome, a hybrid vehicle for efficient and safe drug delivery and its emerging application in cancer treatment. Acta Pharmaceutica, 2015, vol. 65, no. 2, pp. 105–116. doi: 10.1515/acph-2015-0019
55.    Daemen T., De Mare A., Bungener L., De Jonge J., Huckriede A., Wilschut J. Virosomes for antigen and DNA delivery. Advanced Drug Delivery Reviews, 2005, vol. 57, no. 3, pp. 451–463. doi: 10.1016/j.addr.2004.09.005
56.    Waelti E., Wegmann N., Schwaninger R., Wetterwald A., Wingenfeld C., Rothen-Rutishauser B., Gimmi C.D. Targeting HER-2/neu with antirat neu virosomes for cancer therapy. Cancer Research, 2002, vol. 62, no. 2, pp. 437–444.
57.    Kaneda Y. Development of virosome-mediated cancer therapy. Folia Pharmacologica Japonica, 2016, vol. 147, no. 6, pp. 330–333. doi: 10.1254/fpj.147.330
58.    Wenyu D., Rijken P., Ugwoke M. Method for preparing virosomes.Patent US20160151479A1, 2015.
59.    Hatz C., Beck B., Steffen R., Genton B., d'Acremont V., Loutan L., Hartmann K., Herzog C. Real-life versus package insert: A post-marketing study on adverse-event rates of the virosomal hepatitis A vaccine Epaxal® in healthy travelers. Vaccine, 2011, vol. 29, no. 31, pp. 5000–5006. doi: 10.1016/j.vaccine.2011.04.099
60.    Mayer C. Nanocapsules as drug delivery systems. International Journal of Artificial Organs, 2005, vol. 28, no. 11, pp. 1163–1171. doi: 10.1177/039139880502801114
61.    Mora-Huertas C.E., Fessi H., Elaissari A. Polymer-based nanocapsules for drug delivery. International Journal of Pharmaceutics, 2010, vol. 385, no. 1-2, pp. 113–142. doi: 10.1016/j.ijpharm.2009.10.018
62.    Gutteres S., Poletto F.S., Colomé L.M., Raffin R.P., Pohlmann A.R. Polymeric nanocapsules for drug delivery: an overview. Colloids in Drug Delivery, 2010, pp. 71–98.
63.    Kale S.N., Deore S.L. Emulsion micro emulsion and nano emulsion: a review. Systematic Reviews in Pharmacy, 2017, vol. 8, no. 1, pp. 39–47. doi: 10.5530/srp.2017.1.8
64.    Yukuyama M.N., Ghisleni D.D.M., Pinto T.J.A., Bou-Chacra N.A. Nanoemulsion: process selection and application in cosmetics – a review. International Journal of Cosmetic Science, 2016, vol. 38, no. 1, pp. 13–24. doi: 10.1111/ics.12260
65.    Afzal S.M., Shareef M.Z., Kishan V. Transferrin tagged lipid nanoemulsion of docetaxel for enhanced tumor targeting. Journal of Drug Delivery Science and Technology, 2016, vol. 36, pp. 175–182. doi: 10.1016/j.jddst.2016.10.008
66.    Yanasarn N., Sloat B.R., Cui Z. Nanoparticles engineered from lecithin-in-water emulsions as a potential delivery system for docetaxel. International Journal of Pharmaceutics, 2009, vol. 379, no. 1, pp. 174–180. doi: 10.1016/j.ijpharm.2009.06.004
67.    Khan W., Hussain Z., Siddique N.F. Nanoemulsion: a way to enhance bioavailability. World Journal of Pharmaceutical Research, 2018, vol. 7, no. 2, pp. 522–531. doi: 10.20959/wjpr20182-10807
68.    Hörmann K., Zimmer A. Drug delivery and drug targeting with parenteral lipid nanoemulsions – a review. Journal of Controlled Release, 2016, vol. 223, pp. 85–98. doi: 10.1016/j.jconrel.2015.12.016
69.    Patel N.R., Piroyan A., Ganta S., Morse A.B., Candiloro K.M., Solon A.L., Nack A.H., Galati C.A., Bora C., Maglaty M.A., O'Brien S.W., Litwin S., Davis B., Connolly D.C., Coleman T.P. In Vitroand In Vivo evaluation of a novel folate-targeted theranostic nanoemulsion of docetaxel for imaging and improved anticancer activity against ovarian cancers. Cancer Biology and Therapy, 2018, vol. 19, no. 7, pp. 554–564. doi: 10.1080/15384047.2017.1395118
70.    Fofaria N.M., Quattal H.S.S., Liu X., Srivastava S.K. Nanoemulsion formulations for anti-cancer agent piplartine – Characterization, toxicological, pharmacokinetics and efficacy studies. International Journal of Pharmaceutics, 2016, vol. 498, no. 1-2, pp. 12–22. doi: 10.1016/j.ijpharm.2015.11.045
71.    Caminade A.-M., Turrin C.-O., Laurent R., Ouali A., Delavaus-Nicot B. Dendrimers. Towards Catalytic, Material and Biomedical Uses. West Sussex, UK, John Wiley & Sons, 2011, 566 p. doi: 10.1002/anie.201201578
72.    Abbasi E., Aval S.F., Akbarzadeh A., Milani M., Nasrabadi H.T., Joo S.W., Hanifehpour Y., Nejati-Koshki K., Pashaei-Asl R. Dendrimers: synthesis, applications, and properties. Nanoscale Research Letters, 2014, vol. 9, no. 1, pp. 247. doi: 10.1186/1556-276X-9-247
73.    Balogh L., Swanson D.R., Tomalia D.A., Hagnauer G.L., McManus A.T. Dendrimer-silver complexes and nanocomposites as antimicrobial agents. Nano Letters, 2001, vol. 1, no. 1, pp. 18–21. doi: 10.1021/nl005502p
74.    Thiagarajan G., Sadekar S., Greish K., Ray A., Ghandehari H. Evidence of oral translocation of anionic G6.5 dendrimers in mice. Molecular Pharmaceutics, 2013, vol. 10, no. 3, pp. 988–998. doi: 10.1021/mp300436c
75.    Florence A.T., Sakthivel T., Toth I. Oral uptake and translocation of a polylysine dendrimer with a lipid surface. Journal of Controlled Release, 2000, vol. 65, no. 1-2, pp. 253–259. doi: 10.1016/S0168-3659(99)00237-0
76.    Rupp R., Rosenthal S.L., Stanberry L.R. VivaGel (SPL7013 Gel): A candidate dendrimer – microbicide for the prevention of HIV and HSV infection. International Journal of Nanomedicine, 2007, vol. 2, no. 4, pp. 561–566.
77.    Guo Z., Peng H., Kang J., Sun D. Cell-penetrating peptides: Possible transduction mechanisms and therapeutic applications (Review). Biomedical Reports, 2016, vol. 4, no. 5, pp. 528–534. doi: 10.3892/br.2016.639
78.    Munyendo W.LL., Lv H., Benza-Ingoula H., Baraza L.D., Zhou J. Cell penetrating peptides in the delivery of biopharmaceuticals. Biomolecules, 2012, vol. 2, no. 2, pp. 187–202. doi: 10.3390/biom2020187
79.    Heitz F., Morris C.M., Divita G. Twenty years of cell‐penetrating peptides: from molecular mechanisms to therapeutics. British Journal of Pharmacology, 2009, vol. 157, pp. 195–206. doi: 10.1111/j.1476-5381.2009.00057.x
80.    Foged C., Nielsen H.M. Cell-penetrating peptides for drug delivery across membrane barriers. Expert Opinion on Drug Delivery, 2008, vol. 5, no. 1, pp. 105–117. doi:10.1517/17425247.5.1.105
81.    Derakhshankhah H., Jafari S. Cell penetrating peptides: a concise review with emphasis on biomedical applications. Biomedicine & Pharmacotherapy, 2018, vol. 108, pp. 1090–1096. doi: 10.1016/j.biopha.2018.09.097
82.    Hällbrink M., Kilk K., Elmquist A., Lundberg P., Lindgren M., Jiang Y., Pooga M., Soomets U., Langel Ü. Prediction of cell-penetrating peptides. International Journal of Peptide Research and Therapeutics, 2005, vol. 11, no. 4, pp. 249–259. doi: 10.1007/s10989-005-9393-1
83.    Koren E., Torchilin V. Cell-penetrating peptides: breaking through to the other side. Trends in Molecular Medicine, 2012, vol. 18, no. 7, pp. 385–393. doi: 10.1016/j.molmed.2012.04.012
84.    Kadonosono T., Yamano A., Goto T., Tsubaki T., Niibori M., Kuchimaru T., Kizaka-Kondoh S. Cell penetrating peptides improve tumor delivery of cargos through neuropilin-1-dependent extravasation. Journal of Controlled Release, 2015, vol. 201, pp. 14–21. doi: 10.1016/j.jconrel.2015.01.011
85.    Bolhassani A., Jafarzade B.S., Mardani G. In vitroand in vivodelivery of therapeutic proteins using cell penetrating peptides. Peptides, 2017, vol. 87, pp. 50–63. doi: 10.1016/j.peptides.2016.11.011
86.    Trineeva O.V., Halahakoon A.J., Slivkin A.I. Cell carriers as systems of delivery of antitumor drugs (review). Drug development & registration, 2019. Т. 8. № 1. С. 43–57. (in Russian). doi: 10.33380/2305-2066-2019-8-1-43-57
87.    Villa C.H., Anselmo A.C., Mitragotri S., Muzykantov V. Red blood cells: supercarriers for drugs, biologicals, and nanoparticles and inspiration for advanced drug delivery systems. Advanced Drug Delivery Reviews, 2016, vol. 106, pp. 88–103. doi: 10.1016/j.addr.2016.02.007
88.    Ataullakhanov F.I., Vitvitsky V.M., Kovaleva V.L., Mironova S.B. Rubomycin loaded erythrocytes in the treatment of mouse tumor P388. Advances in Experimental Medicine and Biology, 1992, vol. 326, pp. 209–213. doi: 10.1007/978-1-4615-3030-5_26
89.    Magnani M., Rossi L., Fraternale A., Bianchi M., Antonelli A., Crinelli R., Chiarantini L. Erythrocyte-mediated delivery of drugs, peptides and modified oligonucleotides. Gene Therapy, 2002, vol. 9, no. 11, pp. 749–751. doi: 10.1038/sj.gt.3301758
Hirlekar R.S., Patel P.D., Kadam V.J. Drug loaded erythrocytes: as novel drug delivery system. Current Pharmaceutical Design, 2008, vol. 14, no. 1, pp. 63–70. doi: 10.2174/138161208783330772


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика