doi: 10.17586/2226-1494-2020-20-4-472-484


BLOCKCHAIN TECHNOLOGY IN 5G NETWORKS

S. V. Bezzateev, I. R. Fedorov


Read the full article  ';
Article in Russian

For citation:
 Bezzateev S.V., Fedorov I.R. Blockchain technology in 5G networks. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2020, vol. 20, no. 4, pp. 472–484 (in Russian). doi: 10.17586/2226-1494-2020-20-4-472-484


Abstract
The rapid development of mobile networks and the growth of various types of devices connected to them has called forth the integrity and confidentiality ensuring of the transmitted data that now is a high-priority problem. The emergence of cryptocurrency was followed by renewal of interest in blockchain technology and the possibility of its use in various fields. The paper discusses currently existing methods of blockchain technology application in 5G networks in order to solve security problems, network connectivity and productivity improvement, as well as to develop new directions that expand the capabilities of services and applications in fifth-generation networks. The paper presents analysis of modern research works on the blockchain technology integration and key technologies used in the fifth-generation mobile networks. Particular attention is paid to applications of blockchain technology in cloud computing, edge computing, software-defined networking, virtualization of network functions, 5G-slicing and device-to-device communication. Based on the materials presented in the review, the options are outlined that blockchain technology can provide to 5G mobile networks and services through the use of a decentralized architecture and a smart contract algorithm. The materials  of the proposed review is focused on the three main aspects: enhancement of transmitted information security, system performance and resources management. The paper can be useful to specialists and researchers working in the field of information security of the fifth-generation mobile networks, as well as for experts in the field of blockchain technology as an up-to-date overview of various applications of blockchain technology in the fifth-generation networks.

Keywords: blockchain, mobile network, 5G, security, decentralization, cloud computing

References
1. Agiwal M., Roy A., Saxena N. Next generation 5G wireless networks: A comprehensive survey. IEEE Communications Surveys & Tutorials, 2016, vol. 18, no. 3, pp. 1617–1655. doi: 10.1109/COMST.2016.2532458
2. Panwar N., Sharma S., Singh A.K. A survey on 5G: The next generation of mobile communication. Physical Communication, 2016, vol. 18, pp. 64–84. doi: 10.1016/j.phycom.2015.10.006
3. Christidis K., Devetsikiotis M. Blockchains and smart contracts for the internet of things. IEEE Access, 2016, vol. 4, pp. 2292–2303. doi: 10.1109/ACCESS.2016.2566339
4. Zheng Z., Xie S., Dai H., Chen X., Wang H. An overview of blockchain technology: Architecture, consensus, and future trends. Proc. 6th IEEE International Congress on Big Data (BigData Congress), 2017, pp. 557–564.
5. Nakamoto S. Bitcoin: A peer-to-peer electronic cash system, 2008.
6. Haber S., Stornetta W.S. How to time-stamp a digital document. Journal of Cryptology, 1991, vol. 3, no. 2, pp. 99–111. doi: 10.1007/BF00196791
7. Wang X., Zha X., Ni W., Liu R.P., Guo Y.J., Niu X., Zheng K. Survey on blockchain for Internet of Things. Computer Communications, 2019, vol. 136, pp. 10–29. doi: 10.1016/j.comcom.2019.01.006
8. Ali M.S., Vecchio M., Pincheira M., Dolui K., Antonelli F., Rehmani M.H. Applications of blockchains in the Internet of Things: A comprehensive survey. IEEE Communications Surveys & Tutorials, 2019, vol. 21, no. 2, pp. 1676–1717. doi: 10.1109/COMST.2018.2886932
9. Xie J., Tang H., Huang T., Yu F.R., Xie R., Liu J., Liu Y. A survey of blockchain technology applied to smart cities: Research issues and challenges. IEEE Communications Surveys & Tutorials, 2019, vol. 21, no. 3, pp. 2794–2830. doi: 10.1109/COMST.2019.2899617
10. Jiang T., Fang H., Wang H. Blockchain-based internet of vehicles: Distributed network architecture and performance analysis. IEEE Internet of Things Journal, 2019, vol. 6, no. 3, pp. 4640–4649. doi: 10.1109/JIOT.2018.2874398
11. Rabah K. Overview of blockchain as the engine of the 4th industrial revolution. Mara Research Journal of Business & Management, 2017, vol. 1, no. 1, pp. 125–135.
12. Wübben D., Rost P., Bartelt J., Lalam M., Savin V., Gorgoglione M., Dekorsy A., Fettweis G. Benefits and impact of cloud computing on 5G signal processing: Flexible centralization through cloud-RAN. IEEE Signal Processing Magazine, 2014, vol. 31, no. 6, pp. 35–44. doi: 10.1109/MSP.2014.2334952
13. Chen M., Zhang Y., Li Y., Mao S., Leung V.C. EMC: Emotion-aware mobile cloud computing in 5G. IEEE Network, 2015, vol. 29, no. 2, pp. 32–38. doi: 10.1109/MNET.2015.7064900
14. Zhou J., Cao Z., Dong X., Vasilakos A.V. Security and privacy for cloud-based IoT: Challenges. IEEE Communications Magazine, 2017, vol. 55, no. 1, pp. 26–33. doi: 10.1109/MCOM.2017.1600363CM
15. Li J., Wu J., Chen L. Block-secure: Blockchain based scheme for secure P2P cloud storage. Information Sciences, 2018, vol. 465, pp. 219–231. doi: 10.1016/j.ins.2018.06.071
16. Yang M., Margheri A., Hu R., Sassone V. Differentially private data sharing in a cloud federation with blockchain. IEEE Cloud Computing, 2018, vol. 5, no. 6, pp. 69–79. doi: 10.1109/MCC.2018.064181122
17. Yang H., Wu Y., Zhang J., Zheng H., Ji Y., Lee Y. BlockONet: blockchain-based trusted cloud radio over optical fiber network for 5G fronthaul. Proc. Optical Fiber Communications  Conference and Exposition (OFC 2018), 2018, pp. 1–3. doi: 10.1364/ofc.2018.w2a.25
18. Ali S., Wang G., Bhuiyan M.Z.A., Jiang H. Secure data provenance in cloud-centric internet of things via blockchain smart contracts. Proc. 4th IEEE SmartWorld, 15th IEEE International Conference on Ubiquitous Intelligence and Computing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People and Smart City Innovations, SmartWorld/UIC/ATC/ScalCom/CBDCom/IoP/SCI, 2018, pp. 991–998. doi: 10.1109/SmartWorld.2018.00175
19. Taleb T., Samdanis K., Mada B., Flinck H., Dutta S., Sabella D. On multi-access edge computing: A survey of the emerging 5G network edge cloud architecture and orchestration. IEEE Communications Surveys & Tutorials, 2017, vol. 19, no. 3, pp. 1657–1681. doi: 10.1109/COMST.2017.2705720
20. Pham Q.-V., Fang F., Ha V.N., Piran J., Le M., Le L.B., Hwang W.-J., Ding Z. A Survey of multi-access edge computing in 5G and beyond: fundamentals, technology integration, and state-of-the-art. IEEE Access, 2020, vol. 8, pp. 116974–117017. doi: 10.1109/ACCESS.2020.3001277
21. Mukherjee M., Matam R., Shu L., Maglaras L., Ferrag M.A., Choudhury N., Kumar V. Security and privacy in fog computing: Challenges. IEEE Access, 2017, vol. 5, pp. 19293–19304. doi: 10.1109/ACCESS.2017.2749422
22. Zhang J., Chen B., Zhao Y., Cheng X., Hu F. Data security and privacy-preserving in edge computing paradigm: Survey and open issues. IEEE Access, 2018, vol. 6, pp. 18209–18237. doi: 10.1109/ACCESS.2018.2820162
23. Stanciu A. Blockchain based distributed control system for edge computing. Proc. 21st International Conference on Control Systems and Computer Science (CSCS), 2017, pp. 667–671. doi: 10.1109/CSCS.2017.102
24. Guo S., Hu X., Guo S., Qiu X., Qi F. Blockchain meets edge computing: A distributed and trusted authentication system. IEEE Transactions on Industrial Informatics, 2020, vol. 16, no. 3, pp. 1972–1983. doi: 10.1109/TII.2019.2938001
25. Liu H., Zhang Y., Yang T. Blockchain-enabled security in electric vehicles cloud and edge computing. IEEE Network, 2018, vol. 32, no. 3, pp. 78–83. doi: 10.1109/MNET.2018.1700344
26. Li M., Zhu L., Lin X. Efficient and privacy-preserving carpooling using blockchain-assisted vehicular fog computing. IEEE Internet of Things Journal, 2019, vol. 6, no. 3, pp. 4573–4584. doi: 10.1109/JIOT.2018.2868076
27. Qiao G., Leng S., Chai H., Asadi A., Zhang Y. Blockchain empowered resource trading in mobile edge computing and networks. Proc. IEEE International Conference on Communications (ICC 2019), 2019, pp. 8761664. doi: 10.1109/ICC.2019.8761664
28. Zheng X., Mukkamala R.R., Vatrapu R., Ordieres-Mere J. Blockchain-based personal health data sharing system using cloud storage. Proc. 20th International Conference on e-Health Networking, Applications and Services (Healthcom), 2018, pp. 1–6. doi: 10.1109/HealthCom.2018.8531125
29. Rahman M.A., Rashid M.M., Hossain M.S., Hassanain E., Alhamid M.F., Guizani M. Blockchain and IoT-based cognitive edge framework for sharing economy services in a smart city. IEEE Access, 2019, vol. 7, pp. 18611–18621. doi: 10.1109/ACCESS.2019.2896065
30. Tang W., Zhao X., Rafique W., Dou W. A blockchain-based offloading approach in fog computing environment. Proc. 16th IEEE International Symposium on Parallel and Distributed Processing with Applications, 17th IEEE International Conference on Ubiquitous Computing and Communications, 8th IEEE International Conference on Big Data and Cloud Computing, 11th IEEE International Conference on Social Computing and Networking and 8th IEEE International Conference on Sustainable Computing and Communications, ISPA/IUCC/BDCloud/SocialCom/SustainCom 2018, 2018, pp. 308–315. doi: 10.1109/BDCloud.2018.00056
31. Zaidi Z., Friderikos V., Yousaf Z., Fletcher S., Dohler M., Aghvami H. Will SDN be part of 5G? . IEEE Communications Surveys & Tutorials, 2018, vol. 20, no. 4, pp. 3220–3258. doi: 10.1109/COMST.2018.2836315
32. Bouras C., Kollia A., Papazois A. SDN & NFV in 5G: Advancements and challenges. Proc. 20th Conference on Innovations in Clouds, Internet and Networks (ICIN), 2017, pp. 107–111. doi: 10.1109/ICIN.2017.7899398
33. Ahmad I., Namal S., Ylianttila M., Gurtov A. Security in software defined networks: A survey. IEEE Communications Surveys & Tutorials, 2015, vol. 17, no. 4, pp. 2317–2346. doi: 10.1109/COMST.2015.2474118
34. Sharma P.K., Singh S., Jeong Y.-S., Park J.H. DistBlockNet: A distributed blockchains-based secure SDN architecture for IoT networks. IEEE Communications Magazine, 2017, vol. 55, no. 9, pp. 78–85. doi: 10.1109/MCOM.2017.1700041
35. Yazdinejad A., Parizi R.M., Dehghantanha A., Choo K.-K.R. Blockchain-enabled authentication handover with efficient privacy protection in SDN-based 5G networks. IEEE Transactions on Network Science and Engineering, 2019, early access. doi: 10.1109/TNSE.2019.2937481
36. Yousaf F.Z., Bredel M., Schaller S., Schneider F. NFV and SDN-key technology enablers for 5G networks. IEEE Journal on Selected Areas in Communications, 2017, vol. 35, no. 11, pp. 2468–2478. doi: 10.1109/JSAC.2017.2760418
37. Mijumbi R., Serrat J., Gorricho J.-L., Bouten N., De Turck F., Boutaba R. Network function virtualization: State-of-the-art and research challenges. IEEE Communications Surveys & Tutorials, 2016, vol. 18, no. 1, pp. 236–262. doi: 10.1109/COMST.2015.2477041
38. Abdelwahab S., Hamdaoui B., Guizani M., Znati T. Network function virtualization in 5G. IEEE Communications Magazine, 2016, vol. 54, no. 4, pp. 84–91. doi: 10.1109/MCOM.2016.7452271
39. Farris I., Taleb T., Khettab Y., Song J. A survey on emerging SDN and NFV security mechanisms for IoT systems. IEEE Communications Surveys & Tutorials, 2019, vol. 21, no. 1, pp. 812–837. doi: 10.1109/COMST.2018.2862350
40. Alwakeel A.M., Alnaim A.K., Fernandez E.B. A survey of network function virtualization security. Proc. SoutheastCon 2018, 2018, pp. 8479121. doi: 10.1109/SECON.2018.8479121
41. Reynaud F., Aguessy F.-X., Bettan O., Bouet M., Conan V. Attacks against network functions virtualization and software-defined networking: State-of-the-art. Proc. NetSoft Conference and Workshops, 2016, pp. 471–476. doi: 10.1109/NETSOFT.2016.7502487
42. Ak E., Canberk B. BCDN: A proof of concept model for blockchain-aided CDN orchestration and routing. Computer Networks, 2019, vol. 161, pp. 162–171. doi: 10.1016/j.comnet.2019.06.018
43. Commonalities of Network Function Virtualization, Blockchains and Smart Contracts. Available at: https://files.ifi.uzh.ch/CSG/teaching/FS18/ComSys/Talk9.pdf (accessed: 26.05.2020).
44. Rebello G.A.F., Alvarenga I.D., Sanz I.J., Duarte O.C.M. BSec-NFVO: A blockchain-based security for network function virtualization orchestration. Proc. IEEE International Conference on Communications (ICC 2019), 2019, pp. 8761651. doi: 10.1109/ICC.2019.8761651
45. Bozic N., Pujolle G., Secci S. Securing virtual machine orchestration with blockchains. Proc. 1st Cyber Security in Networking Conference (CSNet), 2017, pp. 1–8. doi: 10.1109/CSNET.2017.8242003
46. Rebello G.A.F., Camilo G.F., Silva L.G.C., Guimarães L.C.B., de Souza L.A.C., Alvarenga I.D., Duarte O.C.M. Providing a sliced, secure, and isolated software infrastructure of virtual functions through blockchain technology. Proc. 20th International Conference on High Performance Switching and Routing (HPSR), 2019, pp. 8808114. doi: 10.1109/HPSR.2019.8808114
47. Afolabi I., Taleb T., Samdanis K., Ksentini A., Flinck H. Network slicing and softwarization: A survey on principles, enabling technologies, and solutions. IEEE Communications Surveys & Tutorials, 2018, vol. 20, no. 3, pp. 2429–2453. doi: 10.1109/COMST.2018.2815638
48. Kaloxylos A. A survey and an analysis of network slicing in 5G networks. IEEE Communications Standards Magazine, 2018, vol. 2, no. 1, pp. 60–65. doi: 10.1109/MCOMSTD.2018.1700072
49. Foukas X., Patounas G., Elmokashfi A., Marina M.K. Network slicing in 5G: Survey and challenges. IEEE Communications Magazine, 2017, vol. 55, no. 5, pp. 94–100. doi: 10.1109/MCOM.2017.1600951
50. Zhang S. An overview of network slicing for 5G. IEEE Wireless Communications, 2019, vol. 26, no. 3, pp. 111–117. doi: 10.1109/MWC.2019.1800234
51. Nour B., Ksentini A., Herbaut N., Frangoudis N.P.A., Moungla H. A blockchain-based network slice broker for 5G services. IEEE Networking Letters, 2019, vol. 1, no. 3, pp. 99–102. doi: 10.1109/LNET.2019.2915117
52. Backman J., Yrjölä S., Valtanen K., Mämmelä O. Blockchain network slice broker in 5G: Slice leasing in factory of the future use case. Proc. 2017 Internet of Things Business Models, Users, and Networks, 2017, pp. 1–8. doi: 10.1109/CTTE.2017.8260929
53. Valtanen K., Backman J., Yrjölä S. Creating value through blockchain powered resource configurations: Analysis of 5G network slice brokering case. Proc. IEEE Wireless Communications and Networking Conference Workshops (WCNCW), 2018, pp. 185–190. doi: 10.1109/WCNCW.2018.8368983
54. Valtanen K., Backman J., Yrjölä S. Blockchain-powered value creation in the 5G and smart grid use cases. IEEE Access, 2019, vol. 7, pp. 25690–25707. doi: 10.1109/ACCESS.2019.2900514
55. Rawat D.B., Alshaikhi A. Leveraging distributed blockchain-based scheme for wireless network virtualization with security and QoS constraints. Proc. 2018 International Conference on Computing, Networking and Communications (ICNC), 2018, pp. 332–336. doi: 10.1109/ICCNC.2018.8390344
56. Ansari R.I., Chrysostomou C., Hassan S.A., Guizani M., Mumtaz S., Rodriguez J., Rodrigues J.J.P.C. 5G D2D networks: Techniques, challenges, and future prospects. IEEE Systems Journal, 2018, vol. 12, no. 4, pp. 3970–3984. doi: 10.1109/JSYST.2017.2773633
57. Hamoud O.N., Kenaza T., Challal Y. Security in device-to-device communications: a survey. IET Networks, 2018, vol. 7, no. 1, pp. 14–22. doi: 10.1049/iet-net.2017.0119
58. Wang M., Yan Z. Security in D2D communications: A review. Proc. 14th IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom 2015), 2015, vol. 1, pp. 1199–1204. doi: 10.1109/Trustcom.2015.505
59. Cui H., Chen Z., Liu N., Xia B. Blockchain-driven contents sharing strategy for wireless cache-enabled D2D networks. Proc. 2019 IEEE International Conference on Communications Workshops (ICC Workshops), 2019, pp. 8757177. doi: 10.1109/ICCW.2019.8757177
60. Niya S.R., Shüpfer F., Bocek T., Stiller B. Setting up flexible and light weight trading with enhanced user privacy using smart contracts. Proc. IEEE/IFIP Network Operations and Management Symposium: Cognitive Management in a Cyber World (NOMS 2018), 2018, pp. 1–2. doi: 10.1109/NOMS.2018.8406112
61. Yang G., Wu X., Wu Y., Chen C. A distributed secure monitoring system based on blockchain. International Journal of Performability Engineering, 2018, vol. 14, no. 10, pp. 2393–2402. doi: 10.23940/ijpe.18.10.p15.23932402
62. Nguyen D.C., Pathirana P.N., Ding M., Seneviratne A. Blockchain for 5G and beyond networks: A state of the art survey. Journal of Network and Computer Applications, 2020, vol. 166, pp. 102693. doi: 10.1016/j.jnca.2020.102693


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика