doi: 10.17586/2226-1494-2021-21-2-172-178


The parametric convergence performance improvement in the direct adaptive multi-sinusoidal disturbance compensation problem

M. M. Korotina, S. V. Aranovskiy, A. A. Bobtsov, A. V. Lyamin


Read the full article  ';
Article in Russian

For citation:

Korotina M.M., Aranovskiy S.V., Bobtsov A.A., Lyamin A.V. The parametric convergence performance improvement in the direct adaptive multi-sinusoidal disturbance compensation problem. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2021, vol. 21, no. 2, pp. 172–178 (in Russian). doi: 10.17586/2226-1494-2021-21-2-172-178



Abstract

The paper presents an approach to the parametric convergence performance improvement applied to the direct adaptive multi-sinusoidal disturbance compensation problem. The proposed method improves the performance of the existing solutions and ensures the transient monotonicity. The Dynamic Regressor Extension and Mixing (DREM) procedure followed by the discrete gradient estimator is applied for disturbance parameters estimation. The paper proves the applicability of Kreisselmeier’s scheme as an extension of the algorithm in procedure dynamic regressor extension. A numerical simulation is presented to illustrate the improvement of the transient processes of estimating the parameters of an unmeasured perturbation using the DREM procedure. The work can be used in solving practical problems in the fields of processing and evaluating harmonic and multi-harmonic signals, e.g., to suppress vibrations in electromechanical systems.


Keywords: dynamic regressor extension and mixing, Kreisselmeier’s scheme, persistent excitation condition, discrete systems, convergence, parameters identification, disturbance, disturbance compensation

References
  1. Aranovskiy S., Freidovich L. Adaptive compensation of disturbances formedas sumsof sinusoidal signals with application to an active vibration controlbenchmark.European Journal of Control, 2013, vol. 19,no. 4, pp. 253–265.doi: 10.1016/j.ejcon.2013.05.008
  2. Wang J., Aranovskiy S.V., Bobtsov A.A., Pyrkin A.A. Compensating for a multisinusoidal disturbance based on Youla–Kucera parametrization. Automation and Remote Control, 2017, vol. 78, no. 9, pp. 1559–1571. doi: 10.1134/S0005117917090028
  3. Veremey E., Sotnikova M. Optimal filtering correction for marine dynamical positioning control system. Journal of Marine Science and Application, 2016, vol. 15,no. 4, pp. 452–462.doi: 10.1007/s11804-016-1370-x
  4. Belleter D.J., Breu D.A., Fossen T.I., Nijmeijer H.A globally K-exponentially stable nonlinear observer for the wave encounter frequency. IFAC Proceedings Volumes, 2013, vol. 46,no. 33, pp. 209–214.doi: 10.3182/20130918-4-JP-3022.00016
  5. Chen X., Tomizuka M. A minimum parameter adaptive approach for rejecting multiple narrow-band disturbances with application to hard disk drives. IEEE Transactions on Control Systems Technology, 2012, vol. 20,no. 2, pp. 408–415.doi: 10.1109/TCST.2011.2178025
  6. Silva A.C. Feedback adaptive compensation for active vibration control in the presence of plant parameter uncertainties. Thesepour obtenir le grade dedocteur de L'Universitede Grenoble, 2014.
  7. Alcorta-Garcia E., Zolghadri A., Goupil P. A nonlinear observer-based strategy for aircraft oscillatory failure detection: A380 case study. IEEE Transactions on Aerospace and Electronic Systems, 2011, vol. 47,no. 4, pp. 2792–2806.doi: 10.1109/TAES.2011.6034665
  8. Landau I.D., Alma M., Constantinescu A., Martinez J.J., Noë M.Adaptive regulation-Rejection of unknown multiple narrow band disturbances (a review on algorithms and applications). Control Engineering Practice, 2011, vol. 19,no. 10, pp. 1168–1181.doi: 10.1016/j.conengprac.2011.06.005
  9. FrancisB., WonhamM. Theinternalmodelprincipleofcontroltheory. Automatica,1976, vol. 12,no. 5, pp. 457–465. doi: 10.1016/0005-1098(76)90006-6
  10. Aranovskiy S., Bobtsov A., Nikiforov V. Observer design of an unknown sinusoidal output disturbance for nonlinear plant. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2010, no. 3(67),pp. 32–38. (in Russian)
  11. Nikiforov V.O.Adaptive non-linear tracking with complete compensation of unknown disturbances. European Journal of Control, 1998, vol. 4,no. 2, pp. 132–139.doi: 10.1016/S0947-3580(98)70107-4
  12. Aranovskiy S., Bobtsov A., Ortega R., Pyrkin A.Performance enhancement of parameter estimators via dynamic regressor extension and mixing. IEEE Transactions on Automatic Control, 2017, vol. 62,no. 7, pp. 3546–3550.doi: 10.1109/TAC.2016.2614889
  13. Belov A.,Aranovskiy S., Ortega R., Barabanov N., Bobtsov A.Enhanced parameter convergence for linear systems identification: the DREM approach. Proc. 16th European Control Conference, ECC, 2018, pp. 2794–2799.doi: 10.23919/ECC.2018.8550338
  14. Ortega R., Praly L., Aranovskiy S., Yi B., Zhang W.On dynamic regressor extension and mixing parameter estimators: Two Luenberger observers interpretations. Automatica, 2018, vol. 95, pp. 548–551.doi: 10.1016/j.automatica.2018.06.011
  15. Kreisselmeier G. Adaptive observers with exponential rate of convergence. IEEE Transactions on Automatic Control, 1977, vol. 22,no. 1, pp. 2–8.doi: 10.1109/TAC.1977.1101401
  16. Korotina M., Aranovskiy S., Ushirobira R., Vedyakov A. On parameter tuning and convergence properties of the DREM procedure.Proc. 18th European Control Conference, ECC, 2020, pp. 53–58. doi: 10.23919/ECC51009.2020.9143808


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика