doi: 10.17586/2226-1494-2021-21-6-962-968


Random number generation with arrays of coupled quantum-dot micropillar lasers

A. A. Petrenko, A. V. Kovalev, V. E. Bougrov


Read the full article  ';
Article in Russian

For citation:

For citation: Petrenko A.A., Kovalev A.V., Bougrov V.E. Random number generation with arrays of coupled quantum-dot micropillar lasers. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2021, vol. 21, no. 6, pp. 962–968 (in Russian). doi: 10.17586/2226-1494-2021-21-6-962-968



Abstract

The paper investigates the results of random number generation with arrays of coupled quantum-dot micropillar lasers. The micropillars array laser generation is modeled based on the rate equations for quantum dot lasers. The numerical simulation of the dynamics for the arrays of coupled quantum-dot micropillar lasers is carried out utilizing the semi-implicit Euler method, implemented in Julia programming language. The algorithm of random bit sequence generation consists of the following steps: sampling the values of the total field intensity for coupled micropillar lasers; normalizing and discretizing the obtained values per resolution of the 8-bit analog-to-digital converter; extracting the four least significant bits from the bit representation of the sampled values; concatenating the bit values in a single sequence. The possibility of the bit sequences generation having an equiprobable distribution of zeros and ones with a performance of up to 400 Gbit/s was shown utilizing a random number generator based on an array of coupled quantum-dot micropillar lasers for sequences with a length of 14285716 bits at a sampling rate of 100 gigasamples per second and four least significant bits extraction. The resulting bit sequences successfully passed 14 NIST 800-22 statistical tests for the p-value equal to 0.01. The proposed method can be applied to develop random number generators based on larger arrays of coupled quantum-dot micropillar lasers. The results can be utilized in the experimental implementation of random number generators based on arrays of coupled quantum-dot micropillar lasers.


Keywords: random number generators, semiconductor micropillars, quantum-dot micropillars, secure communication

Acknowledgements. This work was supported by the Ministry of Science and Higher Education of Russian Federation, research project no. 2019-1442.

References
  1. Virte M., Mercier E., Thienpont H., Panajotov K., Sciamanna M. Physical random bit generation from chaotic solitary laser diode // Optics Еxpress. 2014. V. 22. N 14. P. 17271–17280. https://doi.org/10.1364/OE.22.017271
  2. Butler T., Durkan C., Goulding D., Slepneva S., Kelleher B., Hegarty S.P., Huyet G. Optical ultrafast random number generation at 1 Tb/s using a turbulent semiconductor ring cavity laser // Optics Letters. 2016. V. 41. N 2. P. 388–391. https://doi.org/10.1364/OL.41.000388
  3. Huang W., Zhang Y., Zheng Z., Li Y., Xu B., Yu S. Practical security analysis of a continuous-variable quantum random-number generator with a noisy local oscillator // Physical Review A. 2020. V. 102. N 1. P. 012422. https://doi.org/10.1103/PhysRevA.102.012422
  4. Oliver N., Soriano M.C., Sukow D.W., Fischer I. Fast random bit generation using a chaotic laser: approaching the information theoretic limit // IEEE Journal of Quantum Electronics. 2013. V. 49. N 11. P. 910–918. https://doi.org/10.1109/JQE.2013.2280917
  5. Zhang L., Pan B., Chen G., Guo L., Lu D., Zhao L., Wang W. 640-Gbit/s fast physical random number generation using a broadband chaotic semiconductor laser // Scientific Reports. 2017. V. 7. P. 45900. https://doi.org/10.1038/srep45900
  6. Cao G., Zhang L., Huang X., Hu W., Yang X. 16.8 Tb/s true random number generator based on amplified spontaneous emission // IEEE Photonics Technology Letters. 2021. V. 33. N 14. P. 699–702. https://doi.org/10.1109/LPT.2021.3088156
  7. Wahl M., Leifgen M., Berlin M., Röhlicke T., Rahn H.-J., Benson O. An ultrafast quantum random number generator with provably bounded output bias based on photon arrival time measurements // Applied Physics Letters. 2011. V. 98. N 17. P. 171105. https://doi.org/10.1063/1.3578456
  8. Nie Y.Q., Zhang H.F., Zhang Z., Wang J., Ma X., Zhang J., Pan J.W. Practical and fast quantum random number generation based on photon arrival time relative to external reference // Applied Physics Letters. 2014. V. 104. N 5. P. 051110. https://doi.org/10.1063/1.4863224
  9. Ren M., Wu E., Liang Y., Jian Y., Wu G., Zeng H. Quantum random-number generator based on a photon-number-resolving detector // Physical Review A. 2011. V. 83. N 2. P. 023820. https://doi.org/10.1103/PhysRevA.83.023820
  10. Applegate M.J., Thomas O., Dynes J.F., Yuan Z.L., Ritchie D.A., Shields A J. Efficient and robust quantum random number generation by photon number detection // Applied Physics Letters. 2015. V. 107. N 7. P. 071106. https://doi.org/10.1063/1.4928732
  11. Guo H., Tang W., Liu Y., Wei W. Truly random number generation based on measurement of phase noise of a laser // Physical Review E. 2010. V. 81. N 5. P. 051137. https://doi.org/10.1103/PhysRevE.81.051137
  12. Qi B., Chi Y.M., Lo H.K., Qian L. High-speed quantum random number generation by measuring phase noise of a single-mode laser // Optics Letters. 2010. V. 35. N 3. P. 312–314. https://doi.org/10.1364/OL.35.000312
  13. Gabriel C., Wittmann C., Sych D., Dong R., Mauerer W., Andersen U.L., Marquardt C., Leuchs G. A generator for unique quantum random numbers based on vacuum states // Nature Photonics. 2010. V. 4. N 10. P. 711–715. https://doi.org/10.1038/nphoton.2010.197
  14. Zheng Z., Zhang Y., Huang W., Yu S., Guo H. 6 Gbps real-time optical quantum random number generator based on vacuum fluctuation // Review of Scientific Instruments. 2019. V. 90. N 4. P. 043105. https://doi.org/10.1063/1.5078547
  15. Haw J.Y., Assad S.M., Lance A.M., Ng N.H.Y., Sharma V., Lam P.K., Symul T. Maximization of extractable randomness in a quantum random-number generator // Physical Review Applied. 2015. V. 3. N 5. P. 054004. https://doi.org/10.1103/PhysRevApplied.3.054004
  16. Nguimdo R.M., Verschaffelt G., Danckaert J., Leijtens X., Bolk J., Van der Sande G. Fast random bits generation based on a single chaotic semiconductor ring laser // Optics Express. 2012. V. 20. N 27. P. 28603–28613. https://doi.org/10.1364/OE.20.028603
  17. Sciamanna M., Shore K.A. Physics and applications of laser diode chaos // Nature Photonics. 2015. V. 9. N 3. P. 151–162. https://doi.org/10.1038/nphoton.2014.326
  18. Kanter I., Aviad Y., Reidler I., Cohen E., Rosenbluh M. An optical ultrafast random bit generator // Nature Photonics. 2010. V. 4. N 1. P. 58–61. https://doi.org/10.1038/nphoton.2009.235
  19. Gies C., Reitzenstein S. Quantum dot micropillar lasers // Semiconductor Science and Technology. 2019. V. 34. N 7. P. 073001. https://doi.org/10.1088/1361-6641/ab1551
  20. Erneux T., Viktorov E.A., Mandel P. Time scales and relaxation dynamics in quantum-dot lasers // Physical Review A. 2007. V. 76. N 2. P. 023819. https://doi.org/10.1103/PhysRevA.76.023819
  21. Lang R., Kobayashi K. External optical feedback effects on semiconductor injection laser properties // IEEE Journal of Quantum Electronics. 1980. V. 16. N 3. P. 347–355. https://doi.org/10.1109/JQE.1980.1070479
  22. Holzinger S., Schneider C., Höfling S., Porte X., Reitzenstein S. Quantum-dot micropillar lasers subject to coherent time-delayed optical feedback from a short external cavity // Scientific Reports. 2019. V. 9. P. 631. https://doi.org/10.1038/s41598-018-36599-3
  23. Kreinberg S., Porte X., Schicke D., Lingnau B., Schneider C., Höfling S., Kanter I., Lüdge K., Reitzenstein S. Mutual coupling and synchronization of optically coupled quantum-dot micropillar lasers at ultra-low light levels // Nature Communications. 2019. V. 10. N 1. P. 1539. https://doi.org/10.1038/s41467-019-09559-2
  24. Kozyreff G., Vladimirov A.G., Mandel P. Global coupling with time delay in an array of semiconductor lasers // Physical Review Letters. 2000. V. 85. N 18. P. 3809–3812. https://doi.org/10.1103/PhysRevLett.85.3809
  25. Alfaro-Bittner K., Barbay S., Clerc M.G. Pulse propagation in a 1D array of excitable semiconductor lasers // Chaos. 2020. V. 30. N 8. P. 083136. https://doi.org/10.1063/5.0006195
  26. Kho Ang S. NIST Randomness Testsuit [Электронныйресурс]. URL: https://github.com/stevenang/randomness_testsuite, свободный. Яз. англ. (дата обращения:01.09.2021).


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика