doi: 10.17586/2226-1494-2022-22-1-18-24


A new algorithm for the identification of sinusoidal signal frequency with constant parameters

K. Nguyen, S. M. Vlasov, A. A. Pyrkin, I. V. Popkov


Read the full article  ';
Article in Russian

For citation:
Nguyen Kh.T., Vlasov S.M., Pyrkin A.A., Popkov I.V. A new algorithm for the identification of sinusoidal signal frequency with constant parameters. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2022, vol. 22, no. 1, pp. 18–24 (in Russian). doi: 10.17586/2226-1494-2022-22-1-18-24


Abstract
The paper presents a solution for identifying the frequency of a sinusoidal signal with constant parameters. The issue can be relevant for compensation of disturbances, control of dynamic objects, and other tasks. The authors propose a method to improve the quality of the estimation of the sinusoidal signal frequency and to ensure exponential convergence to zero of the estimation errors. At the first stage, the sinusoidal signal is presented as an output signal of a linear generator of finite dimension. The signal parameters (amplitude, phase, and frequency) are unknown. At the second stage, the Jordan form of the matrix and the delay operator are applied to parameterize the sinusoidal signal. After a series of special transformations, the simplest equation is obtained containing product of one frequency-dependent unknown parameter and a known function of time. To find the unknown parameter, the authors used the methods of gradient descent and least squares. A new algorithm for the parametrization of a sinusoidal signal is presented. The solution is based on transforming the signal model to a linear regression equation. The problem is solved using gradient descent and least squares tuning methods based on a linear regression equation obtained by parametrizing a sinusoidal signal. The results involve the analysis of the capabilities of the proposed estimation method using computer modeling in the Matlab environment (Simulink). The results confirmed the convergence of the frequency estimation errors to the true values. The developed method can be effectively applied to a wide class of tasks related to compensating or suppressing disturbances described by sinusoidal or multisinusoidal signals, for example, to control a surface vessel with compensation of sinusoidal disturbances.

Keywords: sinusoidal signal, identification, Jordan form of the matrix, linear regression model

References
  1. Pyrkin A.A., Bobtsov A.A., Efimov D., Zolghadri A. Frequency estimation for periodical signal with noise in finite time. Proc. of the 50th IEEE Conference on Decision and Control and European Control Conference(CDC-ECC), 2011, pp. 3646–3651. https://doi.org/10.1109/CDC.2011.6160655
  2. Aranovskiy S., Bobtsov A., Ortega R., Pyrkin A. Improved transients in multiple frequencies estimation via dynamic regressor extension and mixing. IFAC-PapersOnLine, 2016, vol. 49, no. 13, pp. 99–104. https://doi.org/10.1016/j.ifacol.2016.07.934
  3. Bobtsov A., Lyamin A., Romasheva D. Algorithm of parameters’ identification of polyharmonic function. IFAC Proceedings Volumes, 2002, vol. 35, no. 1, pp. 439–443. https://doi.org/10.3182/20020721-6-ES-1901.01059
  4. Marino R., Tomei R. Global estimation of n unknown frequencies. IEEE Transactions on Automatic Control, 2002, vol. 47, no. 8, pp. 1324–1328. https://doi.org/10.1109/TAC.2002.800761
  5. Bodson M., Douglas S.C. Adaptive algorithms for the rejection of sinusoidal disturbances with unknown frequency. Automatica, 1997, vol. 33, no. 12, pp. 2213–2221.https://doi.org/10.1016/S0005-1098(97)00149-0
  6. Khac T., Vlasov S.M., Iureva R.A. Estimating the Frequency of the Sinusoidal Signal using the Parameterization based on the Delay Operators. Proc. of the 18th International Conference on Informatics in Control, Automation and Robotics (ICINCO), 2021, pp. 656–660. https://doi.org/10.5220/0010536506560660
  7. Sevasteeva E.S., Chernov V.A., Bobtsov A.A. Algorithm for increasing the speed of sinusoidal signal frequency identification. Journal of Instrument Engineering, 2019, vol. 62, no. 9,pp. 767–771. (in Russian). https://doi.org/10.17586/0021-3454-2019-62-9-767-771
  8. Pyrkin A.A., Bobtsov A.A., Nikiforov V.O., Kolyubin S.A., Vedyakov A.A., Borisov O.I., Gromov V.S.Compensation of polyharmonic disturbance of state and output of a linear plant with delay in the control channel. Automation and Remote Control, 2015, vol. 76, no. 12, pp. 2124–2142.https://doi.org/10.1134/S0005117915120036
  9. Bobtsov A.A., Pyrkin A.A.Compensation of unknown sinusoidal disturbances in linear plants of arbitrary relative degree. Automation and Remote Control,2009,vol. 70, no. 3,pp. 449–456. 
  10. Bobtsov A.A., Kolyubin S.A., Pyrkin A.A.Compensation of unknown multi-harmonic disturbances in nonlinear plants with delayed control. Automation and Remote Control, 2010, vol. 71, no. 11, pp. 2383–2394.https://doi.org/10.1134/S000511791011010X
  11. Vlasov S., Margun A., Kirsanova A., Vakhvianova P. Adaptive controller for uncertain multi-agent system under disturbances. Proc. of the 16th International Conference on Informatics in Control, Automation and Robotics(ICINCO), 2019, vol. 2, pp. 198–205.https://doi.org/10.5220/0007827701980205
  12. Vlasov S.M., Borisov O.I., Gromov V.S., Pyrkin A.A., Bobtsov A.A. Algorithms of adaptive and robust output control for a robotic prototype of a surface vessel. Mekhatronika, Avtomatizatsiya, Upravlenie, 2016, vol. 17, no. 1, pp. 18–25. (in Russian). https://doi.org/10.17587/mau.17.18-25
  13. Vlasov S.M., Borisov O.I., Gromov V.S., Pyrkin A.A., Bobtsov A.A. Robust system of dynamic positioning for robotized model of surface craft. Journal of Instrument Engineering,2015, vol. 58, no. 9, pp. 713–719. (in Russian). https://doi.org/10.17586/0021-3454-2015-58-9-713-719
  14. Hsu L., Ortega R., Damm G. A globally convergent frequency estimator. IEEE Transactions on Automatic Control, 1999, vol. 44, no. 4, pp. 698–713. https://doi.org/10.1109/9.754808
  15. Hou M. Amplitude and frequency estimator of a sinusoid. IEEE Transactions on Automatic Control, 2005, vol. 50, no. 6, pp. 855–858. https://doi.org/10.1109/TAC.2005.849244
  16. Lee S.W., Lim J.S., Baek S., Sung K.M. Time-varying signal frequency estimation by VFF Kalman filtering. Signal Processing, 1999, vol. 77, no. 3, pp. 343–347. https://doi.org/10.1016/S0165-1684(99)00085-7
  17. Karimi-Ghartemani M.,Ziarani A.K.A nonlinear time-frequency analysis method. IEEE Transactions on Signal Processing, 2004, vol. 52, no. 6, pp. 1585–1595. https://doi.org/10.1109/TSP.2004.827155
  18. Fedele G., Ferrise A. A frequency-locked-loop filter for biased multi-sinusoidal estimation. IEEE Transactions on Signal Processing, 2014, vol. 62, no. 5, pp. 1125–1134. https://doi.org/10.1109/TSP.2014.2300057
  19. Hall S., Wereley N. Performance of higher harmonic control algorithms for helicopter vibration reduction. Journal of Guidance, Control, and Dynamics, 1993, vol. 16, no. 4, pp. 793–797. https://doi.org/10.2514/3.21085
  20. Nikiforov V.O. Adaptive servomechanism controller with an implicit reference model.International Journal of Control, 1997, vol. 68, no. 2, pp. 277–286. https://doi.org/10.1080/002071797223604
  21. Umari A.M.J., Gorelick S.M. Evaluation of the matrix exponential for use in ground-water-flow and solute-transport simulations: theoretical framework. Water-Resources Investigations Report 86-4096. U.S. Geological Survey, 1986, pp. 12. https://doi.org/10.3133/wri864096
  22. Ljung L. System Identification: Theory for the User.NJ, Prentice-Hall, 1987.


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2025 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика