Menu
Publications
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
Editor-in-Chief
Nikiforov
Vladimir O.
D.Sc., Prof.
Partners
doi: 10.17586/2226-1494-2022-22-3-415-432
Methods for audiovisual recognition of people in masks
Read the full article ';
Article in Russian
For citation:
Abstract
For citation:
Kosulin K.E., Karpov A.A. Methods for audiovisual recognition of people in masks. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2022, vol. 22, no. 3, pp. 415–432 (in Russian). doi: 10.17586/2226-1494-2022-22-3-415-432
Abstract
In the modern world, wearing masks, respirators and facial clothes is very popular. The novel coronavirus pandemic that began in 2019 has also significantly increased the applicability of masks in public places. The most affective person recognition methods are identification by face image and voice recording. However, person recognition systems are facing new challenges due to masks covering most of the subject’s face. Existence of new problems for intelligent systems determines the relevance of masked person recognition systems research, therefore the subject of the study is the systems and datasets for masked people recognition. The article discusses analysis of the main approaches to masked people identity recognition: masked face recognition, masked voice recognition and audiovisual methods. In addition, this article includes comparative analysis of images and recordings datasets required for person recognition systems. The results of the study showed that among the methods that use face images the most effective are methods based on convolutional neural networks and the mask area feature extraction. The methods of x-vector analysis showed a slight drop in efficiency which allows us to conclude that they are applicable in the tasks of recognizing the identity of a speaker in a mask. Results of this study help with formulation of requirements for perspective masked person recognition systems and determining directions for further research.
Keywords: person recognition, facial biometrics, voice biometrics, medical masks, personal protective equipment, audiovisual features, information fusion
Acknowledgements. This work was partially supported by the RFBR (project No. 20-04-60529), by the Council for Grants of the President of Russia (grant No. NSH-17.2022.1.6), as well as by the Russian state research (No. 0073-2019-0005).
References
Acknowledgements. This work was partially supported by the RFBR (project No. 20-04-60529), by the Council for Grants of the President of Russia (grant No. NSH-17.2022.1.6), as well as by the Russian state research (No. 0073-2019-0005).
References
-
Chernenkova A. Facial recognition technology in Russia: do the citizens of Russia accept it? University of Twente.BMS Faculty Department of Communication Science UniversityofTwente, 2021,78 p.
-
Kukharev G.A., Matveev Yu.N., Forczmański P. People retrieval by means of composite pictures - methods, systems and practical decisions. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2015, vol. 15, no. 4, pp. 640–653. (in Russian). https://doi.org/10.17586/2226-1494-2015-15-4-640-653
-
GrotherP., Ngan M. Face recognition vendor test (FRVT). NISTInteragencyReport8009. US Department of Commerce, National Institute of StandardsandTechnology, 2014. https://doi.org/10.6028/NIST.IR.8009
-
Dvoynikova A., Markitantov M., Ryumina E., Ryumin D., Karpov A. Analytical review of audiovisual systems for determining personal protective equipment on a person's face. Informatics and Automation, 2021, vol. 20, no. 5, pp. 1116–1152. (in Russian). https://doi.org/10.15622/20.5.5
-
Wang Z., Wang G., Huang B., Xiong Z., Hong Q., Wu H., Yi P., Jiang K., Wang N., Pei Y., Chen H., Miao Y., Huang Z., Liang J. Masked face recognition dataset and application.arXiv, 2020, arXiv:2003.09093.
-
Geng M., Peng P., Huang Y., Tian Y. Masked face recognition with generative data augmentation and domain constrained ranking.Proc. of the 28th ACM International Conference on Multimedia, 2020, pp. 2246–2254. https://doi.org/10.1145/3394171.3413723
-
Din N.U., Javed K., Bae S., Yi J. A novel GAN-based network for unmasking of masked face.IEEE Access, 2020, vol. 8, pp. 44276–44287. https://doi.org/10.1109/ACCESS.2020.2977386
-
Din N.U., Javed K., Bae S., Yi J. Effective removal of user-selected foreground object from facial images using a novel GAN-based network.IEEE Access, 2020, vol. 8, pp. 109648–109661. https://doi.org/10.1109/ACCESS.2020.3001649
-
Deng J., Guo J., Xue N., Zafeiriou S. ArcFace: Additive angular margin loss for deep face recognition. Proc. of the 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 4685–4694. https://doi.org/10.1109/CVPR.2019.00482
-
Boutros F., Damer N., Kirchbuchner F., Kuijper A. Self-restrained triplet loss for accurate masked face recognition. Pattern Recognition, 2022, vol. 124, pp. 108473. https://doi.org/10.1016/j.patcog.2021.108473
-
Anwar A., Raychowdhury A. Masked face recognition for secure authentication. arXiv, 2020, arXiv:2008.11104. https://doi.org/10.48550/arXiv.2008.11104
-
Damer N., Grebe J.H., Chen C., Boutros F., Kirchbuchner F., Kuijper A. The effect of wearing a mask on face recognition performance: an exploratory study. Proc. of the 19th International Conference of the Biometrics Special Interest Group (BIOSIG), 2020, pp. 9210999.
-
Huang G.B., Ramesh M., Berg T., Learned-Miller E. Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Workshop on Faces in'RealLife'Images: Detection, Alignment, and Recognition, 2008.
-
Ding F., Peng P., Huang Y., Geng M., Tian Y. Masked face recognition with latent part detection. Proc. of the 28th ACM international Conference on Multimedia, 2020, pp. 2281–2289. https://doi.org/10.1145/3394171.3413731
-
Li S., Yi D., Lei Z., Liao S. The CASIA NIR-VIS 2.0 face database. Proc. of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2013, pp. 348–353. https://doi.org/10.1109/CVPRW.2013.59
-
Deng H., Feng Z., Qian G., Lv X., Li H., Li G. MFCosface: a masked-face recognition algorithm based on large margin cosine loss. Applied Sciences, 2021, vol. 11, no. 16, pp. 7310. https://doi.org/10.3390/app11167310
-
Yi D., Lei Z., Liao S., Li S.Z. Learning face representation from scratch. arXiv, 2014, arXiv:1411.7923. https://doi.org/10.48550/arXiv.1411.7923
-
Hong J.H., Kim H., Kim M., Nam G.P., Cho J., Ko H.-S., Kim I.-J. A 3D model-based approach for fitting masks to faces in the wild. Proc. of the IEEE International Conference on Image Processing (ICIP), 2021, pp. 235–239. https://doi.org/10.1109/ICIP42928.2021.9506069
-
Hariri W. Efficient masked face recognition method during the covid-19 pandemic. Signal, Image and Video Processing, 2022, vol. 16, no. 3, pp. 605–612. https://doi.org/10.1007/s11760-021-02050-w
-
Maharani D.A., MacHbub C., Rusmin P.H., Yulianti L. Improving the capability of real-time face masked recognition using cosine distance. Proc. of the 6th International Conference on Interactive Digital Media (ICIDM), 2020, pp. 9339677. https://doi.org/10.1109/ICIDM51048.2020.9339677
-
Montero D., Nieto M., Leskovsky P., Aginako N. Boosting masked face recognition with multi-task arcface. arXiv, 2021, arXiv:2104.09874. https://doi.org/10.48550/arXiv.2104.09874
-
Golwalkar R., Mehendale N. Masked Face Recognition Using Deep Metric Learning and FaceMaskNet21. SSRN Electronic Journal, 2020, pp. 3731223. http://dx.doi.org/10.2139/ssrn.3731223
-
Li C., Ge S., Zhang D., Li J. Look through masks: Towards masked face recognition with de-occlusion distillation. Proc. of the 28th ACM International Conference on Multimedia, 2020, pp. 3016–3024. https://doi.org/10.1145/3394171.3413960
-
Hong Q., Wang Z., He Z., Wang N., Tian X., Lu T. Masked face recognition with identification association. Proc. of the IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI), 2020, pp. 731–735. https://doi.org/10.1109/ICTAI50040.2020.00116
-
Mandal B., Okeukwu A., Theis Y. Masked face recognition using ResNet-50. arXiv, 2021, arXiv:2104.08997. https://doi.org/10.48550/arXiv.2104.08997
-
Du H., Shi H., Liu Y., Zeng D., Mei T. Towards NIR-VIS masked face recognition. IEEE Signal Processing Letters, 2021, vol. 28, pp. 768–772. https://doi.org/10.1109/LSP.2021.3071663
-
Wu G.L. Masked face recognition algorithm for a contactless distribution cabinet. Mathematical Problem in Engineering, 2021, vol. 2021, pp. 5591020. https://doi.org/10.1155/2021/5591020
-
Li Y., Guo K., Lu Y., Liu L. Cropping and attention based approach for masked face recognition. Applied Intelligence, 2021, vol. 51, no. 5, pp. 3012–3025. https://doi.org/10.1007/s10489-020-02100-9
-
Gover A.R., Harper S.B., Langton L. Anti-Asian hate crime during the COVID-19 pandemic: Exploring the reproduction of inequality. American Journal of Criminal Justice, 2020, vol. 45, no. 4, pp. 647–667. https://doi.org/10.1007/s12103-020-09545-1
-
Saeidi R., Niemi T., Karppelin H., Pohjalainen J., Kinnunen T., Alku P. Speaker recognition for speech under face cover. Proc. of the Interspeech, 2015, pp. 1012–1016. https://doi.org/10.21437/Interspeech.2015-275
-
Zhang C., Tan T. Voice disguise and automatic speaker recognition. Forensic Science International, 2008, vol. 175, no. 2-3, pp. 118–122. https://doi.org/10.1016/j.forsciint.2007.05.019
-
Fecher N. The "audio-visual face cover corpus": investigations into audio-visual speech and speaker recognition when the speaker's face is occluded by facewear. Proc. of the 13th Annual Conference of the International Speech Communication Association (INTERSPEECH), 2012, pp. 2250–2253. https://doi.org/10.21437/Interspeech.2012-133
-
Iszatt T., Malkoc E., Kelly F., Alexander A. Exploring the impact of face coverings on x-vector speaker recognition using VOCALISE. Poc. of the Conference: International Association of Forensic Phonetics and Acoustics, 2021.
-
Schuller B.W., Batliner A., Bergler C., Messner E.-M., Hamilton A., Amiriparian S., Baird A., Rizos G., Schmitt M., Stappen L., Baumeister H., MacIntyre D.A., Hantke S. The interspeech 2020 computational paralinguistics challenge: Elderly emotion, breathing & masks. Proc. of the Interspeech, 2020, pp. 2042–2046. https://doi.org/10.21437/Interspeech.2020-32
-
Montacié C., Caraty M. J. Phonetic, frame clustering and intelligibility analyses for the INTERSPEECH 2020 ComParE Challenge. Proc. of the 21st Annual Conference of the International Speech Communication Association (INTERSPEECH), 2020, pp. 2062–2066. https://doi.org/10.21437/Interspeech.2020-2243
-
Riumina E.V., Riumin D.A., Markitantov M.V., Karpov A.A. Training data generation method for a computer system for detecting safety masks on people's faces. Computer Optics, 2022, vol. 46. in press (in Russian).
-
Przybocki M.A., Martin A.F., Le A.N. NIST speaker recognition evaluations utilizing the Mixer corpora–2004, 2005, 2006.IEEE Transactions on Audio, Speech, and Language Processing, 2007,vol. 15,no. 7, pp. 1951–1959. https://doi.org/10.1109/TASL.2007.902489
-
Alam M.R., Bennamoun M., Togneri R., Sohel F. An efficient reliability estimation technique for audio-visual person identification.Proc. of the IEEE 8th Conference on Industrial Electronics and Applications (ICIEA), 2013, pp. 1631–1635.
-
Zhao X., Evans N., Dugelay J.-L. Multi-view semi-supervised discriminant analysis: A new approach to audio-visual person recognition. Proc. of the 20th European Signal Processing Conference (EUSIPCO), 2012, pp. 31–35.
-
Nishino T., Kajikawa Y., Muneyasu M. Multimodal person authentication system using features of utterance.Proc. of the 20th International Symposium on Intelligent Signal Processing and Communications Systems (ISPACS), 2012, pp. 43–47. https://doi.org/10.1109/ISPACS.2012.6473450
-
Alam M.R., Bennamoun M., Togneri R., Sohel F. A joint deep Boltzmann machine (jDBM) model for person identification using mobile phone data.IEEE Transactions on Multimedia, 2017, vol. 19,no. 2, pp. 317–326. https://doi.org/10.1109/TMM.2016.2615524
-
Gofman M., Sandico N., Mitra S., Suo E., Muhi S., Vu T. Multimodal biometrics via discriminant correlation analysis on mobile devices. Proc. of the International Conference on Security and Management (SAM). The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp), 2018,P. 174–181.
-
Shenoy R.V. Hidden Markov Models for Analysis of Multimodal Biomedical Images: A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Electrical and Computer Engineering. University of California, Santa Barbara, 2016, 99 p.
-
Chen Y., Yang J., Wang C., Liu N. Multimodal biometrics recognition based on local fusion visual features and variational Bayesian extreme learning machine.Expert Systems with Applications, 2016, vol. 64,pp. 93–103. https://doi.org/10.1016/j.eswa.2016.07.009
-
Garau M., Fraschini M., Didaci L., Marcialis G.L. Experimental results on multi-modal fusion of EEG-based personal verification algorithms.Proc. of the 9th International Conference on Biometrics (ICB), 2016, pp. 7550080. https://doi.org/10.1109/ICB.2016.7550080
-
Shen L., Zheng N., Zheng S., Li W. Secure mobile services by face and speech based personal authentication.Proc. of the IEEE International Conference on Intelligent Computing and Intelligent Systems (ICIS). Vol. 3, 2010, pp. 97–100. https://doi.org/10.1109/ICICISYS.2010.5658534
-
Irfan B., Ortiz M.-G., Lyubova N., Belpaeme T. Multi-modal open-set person identification in HRI. Proc. of the 2018 ACM/IEEE International Conference on Human-Robot Interaction Social Robots in the Wild workshop, 2018.
-
Antipov G., Gengembre N., Le Blouch O., Le Lan G. Automatic quality assessment for audio-visual verification systems. The LOVe submission to NIST SRE challenge 2019. Proc. of the 21st Annual Conference of the International Speech Communication Association (INTERSPEECH), 2020, pp. 2237–2241. https://doi.org/10.21437/Interspeech.2020-1434
-
Estival D., Cassidy S., Cox F., Burnham D. AusTalk: an audio-visual corpus of Australian English. Proc. of the Ninth International Conference on Language Resources and Evaluation (LREC'14), 2014.
-
Khoury E., El Shafey L., McCool C., Günther M., Marcel S. Bi-modal biometric authentication on mobile phones in challenging conditions. Image and Vision Computing, 2014, vol. 32, no. 12, pp. 1147–1160. https://doi.org/10.1016/j.imavis.2013.10.001
-
McCool C., Marcel S. MOBIO database for the ICPR 2010 face and speech competition. Idiap Communication Report. Idiap Research Institute, 2009.
-
Alam M.R., Togneri R., Sohel F., Bennamoun M., Naseem I. Linear regression-based classifier for audio visual person identification. Proc. of the 1st International Conference on Communications, Signal Processing, and their Applications (ICCSPA), 2013, pp. 6487281. https://doi.org/10.1109/ICCSPA.2013.6487281
-
Tresadern P., Cootes T.F., Poh N., Matejka P., Hadid A., Lévy C., McCool C., Marcel S. Mobile biometrics: Combined face and voice verification for a mobile platform. IEEE Pervasive Computing, 2013, vol. 12, no. 1, pp. 79–87. https://doi.org/10.1109/MPRV.2012.54
-
Islam R., Sobhan A. BPN based likelihood ratio score fusion for audio-visual speaker identification in response to noise. International Scholarly Research Notices, 2014, vol. 2014, pp. 737814. https://doi.org/10.1155/2014/737814
-
Primorac R., Togneri R., Bennamoun M., Sohel F. Audio-visual biometric recognition via joint sparse representations. Proc. of the 23rd International Conference on Pattern Recognition (ICPR), 2016, pp. 3031–3035. https://doi.org/10.1109/ICPR.2016.7900099
-
Memon Q., AlKassim Z., AlHassan E., Omer M., Alsiddig M. Audio-visual biometric authentication for secured access into personal devices. Proc. of the 6th International Conference on Bioinformatics and Biomedical Science (ICBBS), 2017, pp. 85–89. https://doi.org/10.1145/3121138.3121165
-
Gofman M.I., Mitra S., Cheng T.-H.K., Smith N.T. Multimodal biometrics for enhanced mobile device security. Communications of the ACM, 2016, vol. 59, no. 4, pp. 58–65. https://doi.org/10.1145/2818990
-
Sadjadi S.O., Greenberg C., Singer E., Reynolds D., Mason L., Hernandez-Cordero J. The 2019 NIST speaker recognition evaluation CTS challenge. Proc. of the Speaker and Language Recognition Workshop (Odyssey 2020), 2020, pp. 266–272. https://doi.org/10.21437/Odyssey.2020-38
-
Yu C., Huang L. Biometric recognition by using audio and visual feature fusion. Proc. of the 2012 International Conference on System Science and Engineering (ICSSE), 2012, pp. 173178. https://doi.org/10.1109/ICSSE.2012.6257171