doi: 10.17586/2226-1494-2024-24-5-709-716


Gain characteristics of In0.60Ga0.40As/In0.53Al0.20Ga0.27As superlattice active regions for vertical-cavity surface-emitting lasers

P. E. Kopytov, V. V. Andryushkin, E. V. Pirogov, M. S. Sobolev, A. V. Babichev, Y. M. Shernyakov, M. V. Maximov, A. V. Lyutetskiy, N. A. Pikhtin, L. Y. Karachinsky, I. I. Novikov, S. Tian, A. Y. Egorov


Read the full article  ';
Article in Russian

For citation:
Kopytov P.E., Andryushkin V.V., Pirogov E.V., Sobolev M.S., Babichev A.V., Shernyakov Y.M., Maximov M.V., Lyutetskiy A.V., Pikhtin N.A., Karachinsky L.Ya., Novikov I.I., Tian Sicong, Egorov A.Yu. Gain characteristics of In0.60Ga0.40As/In0.53Al0.20Ga0.27As superlattice active regions for vertical-cavity surface-emitting lasers. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2024, vol. 24, no. 5, pp. 709–716 (in Russian). doi: 10.17586/2226-1494-2024-24-5-709-716


Abstract
The results of investigation of the gain properties of 1300 nm vertical-cavity surface-emitting lasers active regions based on In0.60Ga0.40As/In0.53Al0.20Ga0.27As superlattices and threshold characteristics comparison of superlattices and highly lattice mismatched In0,74Al0,16Ga0,10As quantum wells are presented. The heterostructure of injection lasers with an In0.60Ga0.40As/In0.53Al0.20Ga0.27As superlattice was grown by molecular beam epitaxy. Mesa structure of injection lasers was obtained by selective liquid etching followed by the application of ohmic contacts. The formation of injection lasers with various cavity lengths is performed using the method of manually cleaving mirrors. The output characteristics were measured in a pulsed mode using a large area calibrated germanium photodiode. Spectral characteristics were measured using a spectrophotometer based on monochromator. The achieved threshold characteristics (modal gain about 40 cm–1, transparency current density about 650 A/cm2, internal optical losses about 8 cm–1) of injection lasers based on In0.60Ga0.40As/In0.53Al0.20Ga0.27As superlattices with low lattice mismatch InGaAs layers are comparable to previously presented lasers based on active regions with strongly strained In0,74Al0,16Ga0,10As quantum wells. The characteristic temperatures T0 and T1 were 60 K and 87 K for injection lasers with a cavity length of 1 mm. An increase in the frequency of small-signal modulation of vertical-cavity surface-emitting lasers and their temperature stability is associated with the use of highly strained In0.60Ga0.40As/In0.53Al0.20Ga0.27As superlattices. The proposed active regions based on InGaAs-InP superlattices have the potential to be used in the development of vertical-cavity surface-emitting lasers in the 1300 nm spectral range. The findings of this work can be applied in the realization of experimental species and optimization of modulation parameters for vertical-cavity lasers operating in the 1300 nm wavelength range. 

Keywords: superlattice, vertical-cavity surface-emitting laser, active region, gain, indium gallium arsenide, indium aluminium gallium arsenide

Acknowledgements. The results were obtained within Russian-Chinese project, with the financial support of the Russian side by the Ministry of Science and Higher Education of the Russian Federation (grant agreement in the form of a subsidy from the federal budget No. 075-15-2023-579 dated August 11, 2023) and with the financial support of the Chinese side by the National Key R&D Program of China (2023YFE0111200).

References
  1. Grasse C., Mueller M., Gruendl T., Boehm G., Roenneberg E., Wiecha P., Rosskopf J., Ortsiefer M., Meyer R., Amann M.-C.AlGaInAsPSb-based high-speed short-cavity VCSEL with single-mode emission at 1.3 μm grown by MOVPE on InP substrate. Journal of Crystal Growth, 2016, vol. 370, pp. 217–220. https://doi.org/10.1016/j.jcrysgro.2012.06.051
  2. Camargo Silva M.T., Sih J.P., Chou T.M., Kirk J.K., Evans G.A., Butler J.K.1.3 μm strained MQW AlGaInAs and InGaAsP ridge-waveguide lasers-a comparative study. Proc. of the SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference. V. 1, 1999, pp. 10–12. https://doi.org/10.1109/IMOC.1999.867027
  3. Savolainen P., Toivonen M., Orsila S., Saarinen M., Melanen P., Vilokkinen V., Dumitrescu M., Panarello T., Pessa M. AlGaInAs/InP strained-layer quantum well lasers at 1.3 µm grown by solid source molecular beam epitaxy. Journal of Electronic Materials, 1999, vol. 28, no. 8, pp. 980–985. https://doi.org/10.1007/s11664-999-0208-6
  4. Park M.-R., Kwon O.-K., Han W.-S., Lee K.-H., Park S.-J., Yoo B.-S.All-epitaxial InAlGaAs-InP VCSELs in the 1.3-1.6-μm wavelength range for CWDM band applications. IEEE Photonics Technology Letters, 2006, vol. 18, no. 16, pp. 1717–1719. https://doi.org/10.1109/LPT.2006.879940
  5. Jewell J.,Graham L., Crom M., Maranowski K., Smith J., Fanning T., Schnoes M.Commercial GaInNAs VCSELs grown by MBE. Physica Status Solidi C, 2008, vol. 5, no. 9, pp. 2951–2956. https://doi.org/10.1002/pssc.200779295
  6. Naone R.L., Jackson A.W., Feld S.A., Galt D., Malone K.J., Hindi J.J.Monolithic GaAs-based 1.3 μm VCSEL directly-modulated at 10 Gb/s. Proc. of the Technical Digest. Summaries of papers presented at the Conference on Lasers and Electro-Optics. Postconference Technical Digest (IEEE Cat. No.01CH37170), 2001, pp. CPD13-CP1. https://doi.org/10.1109/CLEO.2001.948231
  7. Boehm G.,Ortsiefer M., Shau R., Rosskopf J., Lauer C., Maute M., Köhler F., Mederer F., Meyer R., Amann M.-C.InP-based VCSEL technology covering the wavelength range from 1.3 to 2.0 μm. Journal of Crystal Growth, 2003, vol. 251, no. 1-4, pp. 748–753. https://doi.org/10.1016/S0022-0248(02)02193-0
  8. Hofmann W., Müller M., Wolf P., Mutig A., Gründl T., Böhm G., Bimberg D., Amann M.-C.40 Gbit/s modulation of 1550 nm VCSEL. Electronics Letters, 2011, vol. 47, no. 4, pp. 270–271. https://doi.org/10.1049/el.2010.3631
  9. Grundl T., Debernardi P., Muller M., Grasse C., Ebert P., Geiger K., Ortsiefer M., Bohm G., Meyer R., Amann M.-C.Record single-mode, high-power VCSELs by inhibition of spatial hole burning. IEEE Journal of Selected Topics in Quantum Electronics, 2013, vol. 19, no. 4, pp. 1700913. https://doi.org/10.1109/JSTQE.2013.2244572
  10. Wolf P., Li H., Caliman A., Mereuta A., Iakovlev V., Sirbu A., Kapon E., Bimberg D.Spectral efficiency and energy efficiency of pulse-amplitude modulation using 1.3 μm wafer-fusion VCSELs for optical interconnects. ACS Photonics, 2017, vol. 4, no. 8, pp. 2018–2024. https://doi.org/10.1021/acsphotonics.7b00403
  11. Zhang J., Hao C., Zheng W., Bimberg D., Liu A.Demonstration of electrically injected vertical-cavity surface-emitting lasers with post-supported high-contrast gratings. Photonics Research, 2022, vol. 10, no. 5, pp. 1170–1176. https://doi.org/10.1364/PRJ.447633
  12. Rapp S., Salomonsson F., Streubel K., Mogg S., Wennekes F., Bentell J., Hammar M.All-epitaxial single-fused 1.55 µm vertical cavity laser based on an InP Bragg reflector. Japanese Journal of Applied Physics, 1999, vol. 38, no. 2S, pp. 1261. https://doi.org/10.1143/JJAP.38.1261
  13. Müller M., Grasse C., Amann M.C. InP-based 1.3 μm and 1.55 μm short-cavity VCSELs suitable for telecom- and datacom-applications. Proc. of the 14th International Conference on Transparent Optical Networks (ICTON), 2012, pp. 1–4. https://doi.org/10.1109/icton.2012.6254394
  14. Sirbu A., Caliman A., Mereuta A., Iakovlev V., Suruceanu G., Kapon E.Recent progress in wafer-fused VCSELs emitting in the 1550-nm band. Proc. of the 13th International Conference on Transparent Optical Networks, 2011, pp. 1–4. https://doi.org/10.1109/ICTON.2011.5970822
  15. Novikov I.I., Nadtochiy A.M., Potapov A.Yu., Gladyshev A.G., Kolodeznyi E.S., Rochas S.S., Babichev A.V., Andryushkin V.V., Denisov D.V., Karachinsky L.Ya., Egorov A.Yu., Bougrov V.E.Influence of the doping type on the temperature dependencies of the photoluminescence efficiency of InGaAlAs/InGaAs/InP heterostructures. Journal of Luminescence, 2021, vol. 239, pp. 118393. https://doi.org/10.1016/j.jlumin.2021.118393
  16. Blokhin S.A.,Babichev A.V., Gladyshev A.G., Karachinsky L.Ya., Novikov I.I., Blokhin A.A., Bobrov M.A., Maleev N.A., Andryushkin V.V., Denisov D.V., Voropaev K.O., Zhumaeva I.O., Ustinov V.M., Egorov A.Yu., Ledentsov N.N.High power single mode 1300-nm superlattice based VCSEL: Impact of the buried tunnel junction diameter on performance. IEEE Journal of Quantum Electronics, 2022, vol. 58, no. 2, pp. 2400115. https://doi.org/10.1109/JQE.2022.3141418
  17. Karachinsky L.Ya., Novikov I.I., Babichev A.V., Gladyshev A.G., Kolodeznyi E.S., Rochas S.S., Kurochkin A.S., Bobretsova Yu.K., Klimov A.A., Denisov D.V., Voropaev K.O., Ionov A.S., Bougrov V.E., Egorov A.Yu. Optical gain in laser heterostructures with an active area based on an InGaAs/InGaAlAs superlattice. Optics and Spectroscopy, 2019, vol. 127, no. 6, pp. 1053–1056. https://doi.org/10.1134/s0030400x19120099
  18. Blokhin S.A., Babichev A.V., Gladyshev A.G., Karachinsky L.Ya., Novikov I.I., Blokhin A.A., Bobrov M.A., Maleev N.A., Kuzmenkov A.G., Nadtochiy A.M., Nevedomskiy V.N., Andryushkin V.V., Rochas S.S., Denisov D.V., Voropaev K.O., Zhumaeva I.O., Ustinov V.M., Egorov A.Yu., Bougrov V.E. Investigation of the characteristics of the InGaAs/InAlGaAs superlattice for 1300 nm range vertical-cavity surface-emitting lasers. Technical Physics, 2022, vol. 67, no. 15, pp. 2432–2440. https://doi.org/https://doi.org/10.21883/tp.2022.15.55271.240-21
  19. Zubov F.I., Kryzhanovskaya N.V., Maximov M.V., Zhukov A.E., Semenova E.S., Kulkova I.V., Yvind K.On the high characteristic temperature of an InAs/GaAs/InGaAsP QD laser with an emission wavelength of ~1.5 μm on an InP substrate. Semiconductors,2017,vol. 51,no. 10,pp. 1332–1336.https://doi.org/10.1134/s1063782617100207
  20. Dashkov A.S.,Kostromin N.A., Babichev A.V., Goray L.I., Egorov A.Yu.Simulation of the energy-band structure of superlattice of quaternary alloys of diluted nitrides. Semiconductors, 2023, vol. 57, no. 3, pp. 203–210. https://doi.org/10.21883/sc.2023.03.56237.4163


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика