doi: 10.17586/2226-1494-2024-24-5-858-865


Switched reluctance motor flux linkage characteristic: experimental approach

A. M. Yaremenko, G. L. Demidova, A. A. Sorokina, A. G. Mamatov, A. N. Bogdanov, A. S. Anuchin


Read the full article  ';
Article in Russian

For citation:
Yaremenko A.M., Demidova G.L., Sorokina A.A., Mamatov A.G., Bogdanov A.N., Anuchin A.S. Switched reluctance motor flux linkage characteristic: experimental approach. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2024, vol. 24, no. 5, pp. 858–865 (in Russian). doi: 10.17586/2226-1494-2024-24-5-858-865


Abstract
Currently, switched reluctance motors are considered the most promising type of electromechanical energy converter without permanent magnets, especially for operations at sub-nominal speeds. To control of a switched reluctance motor to minimize torque ripple requires the regulation of phase currents based on the rotor angular position, utilizing the flux linkage as a function of both current and rotor angle. The flux linkage characteristic is essential in control systems that indirectly determine the rotor position. The paper presents an experimental methodology for deriving the flux linkage characteristic of a switched reluctance motor. The calculation of flux linkage for each rotor position angle of the electric machine is provided. The proposed methodology involves mechanically locking the rotor and periodically applying voltage to one of the motor phases using a power converter to gather data on phase current and voltage. Using the proposed experimental methodology, the relationships between flux linkage, phase current, and rotor angle were obtained. The results demonstrate that this methodology can be effectively utilized to accurately determine the flux linkage characteristic of a switched reluctance motor. The experimental methodology proposed in this paper can be employed to generate the flux linkage characteristic of a switched reluctance motor. This approach is particularly advantageous for designing model predictive control systems.

Keywords: switched reluctance motor, flux linkage characteristic, identification, flux model, electric motor

References
  1. Krasovsky A. Simulation and analysis of improved direct torque control of switched reluctance machine. Indonesian Journal of Electrical Engineering and Computer Science, 2020, vol. 18, no. 1, pp. 251–260. https://doi.org/10.11591/ijeecs.v18.i1.pp251-260
  2. Anuchin A., Demidova G.L., Hao C., Zharkov A., Bogdanov A., Šmídl V. Continuous control set model predictive control of a switch reluctance drive using lookup tables. Energies, 2020, vol. 13, no. 13, pp. 3317. https://doi.org/10.3390/en13133317
  3. Fang G., Ye J., Xiao D., Xia Z., Emadi A. Low-Ripple continuous control set model predictive torque control for switched reluctance machines based on equivalent linear SRM model. IEEE Transactions on Industrial Electronics, 2022, vol. 69, no. 12, pp. 12480–12495. https://doi.org/10.1109/TIE.2021.3130344
  4. Rodriguez J., Kazmierkowski M.P., Espinoza J.R., Zanchetta P., Abu-Rub H., Young H.A., Rojas C.A. State of the art of finite control set model predictive control in power electronics. IEEE Transactions on Industrial Informatics, 2013, vol. 9, no. 2, pp. 1003–1016. https://doi.org/10.1109/TII.2012.2221469
  5. Rodriguez J., Garcia C., Mora A., Flores-Bahamonde F., Acuna P., Novak M., Zhang Y., Tarisciotti L., Davari S.A., Zhang Z., Wang F., Norambuena M., Dragicevic T., Blaabjerg F., Geyer T., Kennel R., Khaburi D.A., Abdelrahem M., Zhang Z., Mijatovic N., Aguilera R.P. Latest advances of model predictive control in electrical drives—Part I: Basic concepts and advanced strategies. IEEE Transactions on Power Electronics, 2022, vol. 37, no. 4, pp. 3927–3942. https://doi.org/10.1109/TPEL.2021.3121532
  6. Rodriguez J., Garcia C., Mora A., Davari S.A., Rodas J., Valencia D.F., Elmorshedy M., Wang F., Zuo K., Tarisciotti L., Flores-Bahamonde F., Xu W., Zhang Z., Zhang Y., Norambuena M., Emadi A., Geyer T., Kennel R., Dragicevic T., Khaburi D.A., Zhang Z., Abdelrahem M., Mijatovic N. Latest Advances of model predictive control in electrical drives—Part II: applications and benchmarking with classical control methods. IEEE Transactions on Power Electronics, 2022, vol. 37, no. 5, pp. 5047–5061. https://doi.org/10.1109/TPEL.2021.3121589
  7. Memon A., Shaikh M.M., Bukhari S.S.H., Ro J.-S. Look-up data tables-based modeling of switched reluctance machine and experimental validation of the static torque with statistical analysis. Journal of Magnetics, 2020, vol. 25, no. 2, pp. 233–244. https://doi.org/10.4283/JMAG.2020.25.2.233
  8. Chancharoensook P., Rahman M.F. Magnetization and static torque characterization of a four-phase switched reluctance motor: experimental investigations. Proc. of the 4th IEEE International Conference on Power Electronics and Drive Systems. IEEE PEDS 2001 – Indonesia. Proceedings (Cat. No.01TH8594). V. 2, 2001, pp. 456–460. https://doi.org/10.1109/PEDS.2001.975359
  9. Cossar C., Miller T.J.E. Electromagnetic testing of switched reluctance motors. Proc. of International Conference on Electrical Machines, 1992, pp. 470–474.
  10. Prescott J.C., El-Kharashi A.K. A method of measuring self-inductances applicable to large electrical machines. Proceedings of the IEE Part A: Power Engineering, 1959, vol. 106, no. 26, pp. 169–173. https://doi.org/10.1049/pi-a.1959.0070
  11. Cossar C., Popescu M., Miller T., McGilp M. On-line phase measurements in switched reluctance motor drives. Proc. of the European Conference on Power Electronics and Applications, 2007, pp. 1–8. https://doi.org/10.1109/epe.2007.4417358
  12. Anuchin A., Bogdanov A., Demidova G., Stolyarov E., Surnin D., Vagapov Y. Online magnetization surface identification for a switched reluctance motor. Proc. of the 55th International Universities Power Engineering Conference (UPEC), 2020, pp. 1–5. https://doi.org/10.1109/UPEC49904.2020.9209832
  13. Cheok A.D., Wang Z. Flux linkage measurement method for switched reluctance motors and inductor/transformers using a real-time DSP system. International Journal of Electronics, 2002, vol. 89, no. 8, pp. 625–644. https://doi.org/10.1080/0020721021000057571
  14. Switched reluctance motor flux linkage characteristic measurement method. Patent CN201010018146A. 2010.
  15. Liu J., Wang G., Sun L., Liu D., Fan Y. A novel method to obtain the flux-linkage characteristics of switched reluctance motors. IEEE Transactions on Magnetics, 2021, vol. 57, no. 11, pp. 8205011. https://doi.org/10.1109/TMAG.2021.3111521
  16. Xu Y., Gu J., Chen H., Chen Z., Pu Y. Power loss calculation for the power converter in switched reluctance motor drive. Proc. of the IEEE International Conference on Information and Automation (ICIA), 2014, pp. 19–24. https://doi.org/10.1109/ICInfA.2014.6932619
  17. He C., Hao C., Qianlong W., Shaohui X., Shunyao Y. Design and control of switched reluctance motor drive for electric vehicles. Proc. of the 14th International Conference on Control, Automation, Robotics and Vision (ICARCV), 2016, pp. 1–6. https://doi.org/10.1109/ICARCV.2016.7838783
  18. Chen H., Wang K., Yan W., Orabia M., Parspour N. Temperature analysis of switched reluctance motor based on equivalent heat circuit method. IEEE Transactions on Applied Superconductivity, 2021, vol. 31, no. 8, pp. 0604104. https://doi.org/10.1109/TASC.2021.3117753
  19. Sarr A., Bahri I., Diallo D., Berthelot E. Sensorless control of Switched Reluctance Machine. Proc. of the IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, 2016, pp. 6693–6698. https://doi.org/10.1109/IECON.2016.7793584
  20. Anuchin A., Shpak D., Kotelnikova A., Dmitriev A., Bogdanov A., Demidova G. Encoderless rotor position estimation of a switched reluctance drive operated under model predictive control. Proc. of the 61th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), 2020, pp. 1–6. https://doi.org/10.1109/RTUCON51174.2020.9316621


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика