doi: 10.17586/2226-1494-2024-24-6-1044-1048


Isakov A.O. et al.
Aspects of organizing game interactions among asymmetric agents using graph neural networks



Read the full article  ';
Article in Russian

For citation:
Isakov A.O., Peregorodiev D.E., Tomilov I.V., Gusarova N.F., Golubev A.A. Aspects of organizing game interactions among asymmetric agents using graph neural networks. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2024, vol. 24, no. 6, pp. 1044–1048 (in Russian). doi: 10.17586/2226-1494-2024-24-6-1044-1048


Abstract
The article considers the structures of representation of the graph of inter-agent connections for increasing the efficiency of agent interaction in cooperative competitive games using graph neural networks. A comparative assessment of metrics and adjacency matrices for graphs of connections defined using geometric and semantic metrics of proximity is performed. It is shown that semantic proximity is more effective in constructing a graph of inter-agent connections, and the use of oriented graphs ensures flexible management of information flows. The proposed patterns are important to consider when organizing multi-agent reinforcement learning in a wide range of application areas.

Keywords: graph theory, graph neural networks, reinforcement learning, multi-agent systems, cooperative-competitive behavior

Acknowledgements. The Ministry of Science and Higher Education of the Russian Federation: State Assignment No. 2019-1339.

References
  1. Yang S. Hierarchical graph multi-agent reinforcement learning for traffic signal control. Information Sciences, 2023, vol. 634, pp. 55–72. https://doi.org/10.1016/j.ins.2023.03.087
  2. Veličković P. Everything is connected: Graph neural networks. Current Opinion in Structural Biology, 2023, vol. 79, pp. 102538. https://doi.org/10.1016/j.sbi.2023.102538
  3. Khemani B., Patil S., Kotecha K., Tanwar S. A review of graph neural networks: concepts, architectures, techniques, challenges, datasets, applications, and future directions. Journal of Big Data, 2024, vol. 11, no. 1, pp. 18. https://doi.org/10.1186/s40537-023-00876-4
  4. Nie M., Chen D., Wang D. Reinforcement learning on graphs: A survey. IEEE Transactions on Emerging Topics in Computational Intelligence, 2023, vol. 7, no. 4, pp. 1065–1082. https://doi.org/10.1109/tetci.2022.3222545
  5. Zhou J., Cui G., Hu S., Zhang Z., Yang C., Liu Z., Wang L., Li C., Sun M. Graph neural networks: A review of methods and applications. AI Open, 2020, vol. 1, pp. 57–81. https://doi.org/10.1016/j.aiopen.2021.01.001
  6. Wu Z., Pan S., Chen F., Long G., Zhang C., Yu P.S. A comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and Learning Systems, 2020, vol. 32, no. 1, pp. 4–24. https://doi.org/10.1109/tnnls.2020.2978386
  7. Bhatti U.A., Tang H., Wu G., Marjan S., Hussain A. Deep learning with graph convolutional networks: An overview and latest applications in computational intelligence. International Journal of Intelligent Systems, 2023, vol. 2023, pp. 8342104. https://doi.org/10.1155/2023/8342104
  8. Wu L., Cui P., Pei J., Zhao L., Guo X. Graph neural networks: foundation, frontiers and applications. Proc. of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2022, pp. 4840–4841. https://doi.org/10.1145/3534678.3542609
  9. Meng L., Shao Y., Yuan L., Lai L., Cheng P., Li X., Yu W., Zhang W., Lin X., Zhou J. A survey of distributed graph algorithms on massive graphs. ACM Computing Surveys, 2024, vol. 57, no. 2, pp. 1–39. https://doi.org/10.1145/3694966
  10. Vrahatis A.G., Lazaros K., Kotsiantis S. Graph Attention Networks: A Comprehensive Review of Methods and Applications. Future Internet, 2024, vol. 16, no. 9, pp. 318. https://doi.org/10.3390/fi16090318
  11. Munikoti S., Agarwal D., Das L., Halappanavar M., Natarajan B. Challenges and opportunities in deep reinforcement learning with graph neural networks: A comprehensive review of algorithms and applications. IEEE Transactions on Neural Networks and Learning Systems, 2023, vol. 35, no. 11, pp. 15051–15071. https://doi.org/10.1109/tnnls.2023.3283523
  12. Verbavatz V., Barthelemy M. Betweenness centrality in dense spatial networks. Physical Review E, 2022, vol. 105, no. 5, pp. 054303. https://doi.org/10.1103/physreve.105.054303
  13. Tsalouchidou I., Baeza-Yates R., Bonchi F., Liao K., Sellis T. Temporal betweenness centrality in dynamic graphs. International Journal of Data Science and Analytics, 2020, vol. 9, no. 3, pp. 257–272. https://doi.org/10.1007/s41060-019-00189-x
  14. Wills P., Meyer F.G. Metrics for graph comparison: a practitionerʼs guide. PLoS ONE, 2020, vol. 15, no. 2, pp. e0228728. https://doi.org/10.1371/journal.pone.0228728
  15. O'Bray L., Horn M., Rieck B., Borgwardt K. Evaluation metrics for graph generative models: Problems, pitfalls, and practical solutions. Proc. of the ICLR 2022 - 10th International Conference on Learning Representations, 2022.


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2025 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика