doi: 10.17586/2226-1494-2025-25-1-23-32


Direct laser thermochemical writing on titanium films for rasterized images creation

A. D. Pivovarov, E. V. Usynina, D. A. Sinev


Read the full article  ';
Article in Russian

For citation:
Pivovarov A.D., Usynina E.V., Sinev D.A. Direct laser thermochemical writing on titanium films for rasterized images creation. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2025, vol. 25, no. 1, pp. 23–32 (in Russian). doi: 10.17586/2226-1494-2025-25-1-23-32


Abstract
Creating greyscale photomasks is an uncommon technical problem which in some cases can be solved by rasterization. At the same time, existing works on the direct laser thermochemical recording show the possibility of forming local areas of transparency as a result of oxidation of thin metal films, but the final contrast of the transmittance coefficient of the resulting structure turns out to be difficult to predict due to the complexity of the web of influencing factors. In the present work, we propose an experimental approach to combining the methods of greyscale thermochemical recording and rasterizing by creating structures with controlled transparency on titanium films which can form the basis for recording topologies of rasterized photomasks. The samples used in this study were thin (20–40 nm) titanium films which were treated using the Minimarker-2 technological complex based on a fiber ytterbium laser. Direct recording with a scanning focused beam was performed using a built-in system of galvanometric scanners. The optical and geometric characteristics of the recorded structures were analyzed using an optical microscope. The experimentally determined recording modes were confirmed by semi-analytical temperature modeling. It is shown that the formation of contrast structures occurs in the ranges of power densities about 15–140 MW/mwhen scanning at speeds from 0.1 to 1 mm/s, and the change in the contrast of the structures is achieved at power densities of about 50–90 MW/m2. The contrast of the transmission coefficient of the recorded structures relative to the initial value of the film transparency is controlled to vary from 1 to 40 %. In a number of regimes, the formation of periodic structures with a period of about 0.71 μm was revealed, leading to diffraction effects observed in reflected light. The paper presents theoretically modeled and experimentally confirmed modes of recording structures under the influence of nanosecond radiation. It is shown that varying the parameters of the effect allows localizing oxidation regions, which leads to a change in the contrast of the transmitted light and allows creating halftone rasterized images with specified values of grayscale in the transmitted light. The practical significance of the obtained results is demonstrated by the example of recording an optical element such as a halftone rasterized photomask with a specified geometry and contrast values.

Keywords: rasterized photomasks, thin titanium films, laser thermochemical recording, diffractive optics, laser lithography, laser-induced oxidation, laser-induced periodic surface structures

Acknowledgements. Research was financially supported by the Russian Science Foundation, project No. 24-79-10230, https://rscf.ru/en/project/24-79-10230/. Authors thank ILT PhD student Ibrahim Qosai for helping with experiments.

References
  1. Ivanov S.A., Doan Van Bac, Ignatiev A.I ., Nikonorov N.V. Features of multiplexed holograms recording in photo-thermo-refractive glass. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2016, vol. 16, no. 3, pp. 428–435. (in Russian). https://doi.org/10.17586/2226-1494-2016-16-3-428-435 
  2. Rathsack B.M., Tabery C.E., Scheer S.A., Pochkowski M., Philbin C., Kalk F., Henderson C.L., Buck P.D., Willson C.G. Optical lithography simulation and photoresist optimization for photomask fabrication. Proceedings of SPIE, 1999, vol. 3678, pp. 1215–1226. https://doi.org/10.1117/12.350173 
  3. Koronkevich V.P., Kiryanov V.P., Korol'kov V.P., Poleshchuk A.G., Cherkashin V.V., Churin E.G., Kharisov A.A. Fabrication of diffractive optical elements by direct laser-writing with circular scanning. Proceedings of SPIE, 1995, vol. 2363, pp. 290–297. https://doi.org/10.1117/12.199647 
  4. Zoric N.Dj., Livshits I.L., Sokolova E.A. Advantages of diffractive optical elements application in simple optical imaging systems. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2015, vol. 15, no. 1, pp. 6–13. (in Russian). https://doi.org/10.17586/2226-1494-2015-15-1-6-13 
  5. Poleshchuk A.G. Methods of fabricating the surface profile of diffractive optical elements. Computer Optics, 1996, no. 16, pp. 54–61. (in Russian) 
  6. Veiko V.P., Korolkov V.P., Poleshchuk A.G., Sinev D.A., Shakhno E.A. Laser technologies in micro-optics. Part 1. Fabrication of diffractive optical elements and photomasks with amplitude transmission. Optoelectronics, Instrumentation and Data Processing, 2017, vol. 53, no. 5, pp. 474–483. https://doi.org/10.3103/S8756699017050077 
  7. Knoblich M., Uwurukundo X., Stumpf D., Kraus M., Hillmer H., Brunner R. Annular gray tone lithography for the fabrication of rotationally symmetric continuous relief meso- and microscale optical elements. Photonics, 2023, vol. 10, no. 9, pp. 1000. https://doi.org/10.3390/photonics10091000 
  8. Li J., Ge S., Liu W. High-efficiency and high-precision replication manufacturing of large-aperture multi-level diffractive lenses. Proceedings of SPIE, 2023, vol. 12963, pp. 129631I. https://doi.org/10.1117/12.3007883 
  9. Oscurato S., Reda F., Salvatore M., Borbone F., Maddalena P., Ambrosio A. Shapeshifting diffractive optical devices. Laser & Photonics Reviews, 2021, vol. 16, no. 4, pp. 2100514. https://doi.org/10.1002/lpor.202100514 
  10. Medunetskiy V., Solk S. Application experience and prospects of diamond micro-turning technology. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2014, no. 1(89), pp. 165–170. (in Russian) 
  11. Zhang J., Li X., Fu Y., Zheng Y., Mo H., Chen X., Xiao J., Xu J. Improved machinability of single crystal silicon by applying in-situ laser-vibration hybrid assisted diamond cutting. Journal of Materials Processing Technology, 2024, vol. 326, pp. 118343. https://doi.org/10.1016/j.jmatprotec.2024.118343 
  12. Wang H., Wang H., Zhang W., Yang, J. Toward Near-Perfect Diffractive Optical Elements via Nanoscale 3D Printing. ACS Nano, 2020, vol. 14, no. 8, pp. 10452–10461. https://doi.org/10.1021/acsnano.0c04313 
  13. Eshe R., Frumkin V., Nice M., Luria O., Ferdman B., Opatovski N., Gommed K., Shusteff M., Shechtman Y., Bercovici M. Programmable thermocapillary shaping of thin liquid films. Flow, 2022, vol. 2, pp. E27. https://doi.org/10.1017/flo.2022.17 
  14. Eliseev N.N., Nevzorov A.A., Mikhalevsky V.A., Kiselev A.V., Burtsev A.A., Ionin V.V., Lotin A.A. Switching the electrical properties of thin-film memristive elements based on GeTe by sequences of ultrashort laser pulses. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2023, vol. 23, no. 5, pp. 911–919. (in Russian). https://doi.org/10.17586/2226-1494-2023-23-5-911-919 
  15. Koreshev S.N., Ratushnyi V.P. Short-wave boundary of applicability of relief-phase reflecting holograms on a thin film of a chalcogenide glassy semiconductor. Proceedings of SPIE, 2013, vol. 8644, pp. 86440W. https://doi.org/10.1117/12.981446
  16. Dykes J.M., Plesa C., Chapman G.H. Enhancing direct-write laser control techniques for bimetallic grayscale photomasks. Proceedings of SPIE, 2008, vol. 6883, pp. 688312. https://doi.org/10.1117/12.765006
  17. Wang R., Wei J., Fan Y. Chalcogenide phase-change thin films used as grayscale photolithography materials. Optics express, 2014, vol. 22, no. 5 pp. 4973–4984. https://doi.org/10.1364/OE.22.004973 
  18. Gotchiyaev V.Z., Korolkov V.P., Sokolov A.P., Chernukhin V.P. High resolution optical recording on a-Si films. Journal of Non-Crystalline Solids, 1991, vol. 137-138, part. 2, pp. 1297–1300. https://doi.org/10.1016/S0022-3093(05)80361-8 
  19. Gochiyaev V.Z., Korol'kov V.P., Sokolov A.P., Chernukhin V.P. Half-tone optical storage in a-Si films. Soviet Journal of Quantum Electronics, 1989, vol. 19, no. 11, pp. 1506–1509. https://doi.org/10.1070/QE1989v019n11ABEH009597 
  20. Akishina E., Lazareva K., Nikonorov N.V., Sidorov A.I., Tsekhomsky V. Effect of halogens on spectral and photosensitive properties of photo-thermo-refractive glasses // Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2009, no. 2(60). pp. 5–16. (in Russian) 
  21. Korolkov V.P., Malyshev A.I., Nikitin V.G., Poleshchuk A.G., Kharissov A.A., Cherkashin V.V. Application of gray-scale LDW-glass masks for fabrication of high-efficiency does. Proceedings of SPIE, 1999, vol. 3633, pp. 129–138. https://doi.org/10.1117/12.349316 
  22. Korolkov V. P., Malyshev A.I., Poleshchuk A.G., Cherkashin V.V., Tiziani H.J., Pruss C., Schoder T., Westhauser J., Wu C. Fabrication of gray-scale masks and diffractive optical elements with LDW-glass. Proceedings of SPIE, 2001, vol. 4440, pp. 73–84. https://doi.org/ 10.1117/12.448026
  23. Korolkov V.P., Malyshev A.I., Nikitin V.G., Poleshchuk A.G., Kharisov A.A., Cherkashin V.V., Wu Ch. Gray-scale masks based on LDW glasses. Avtometrija, 1998, no. 6, pp. 27–37. (in Russian) 
  24. Zhestkij N.A., Efimova A.S., Kenzhebayeva Y., Povarov S.A., Alekseevskiy P.V., Rzhevskiy S.S., Shipilovskikh S.A., Milichko V.A. Grayscale to multicolor laser writing inside a Label-Free Metal-Organic frameworks. Advanced Functional Materials, 2024, vol. 34, no. 30, pp. 2311235. https://doi.org/10.1002/adfm.202311235 
  25. Low M., Lee H., Lim C., Sandeep C., Murukeshan V., Kim S., Kim Y. Laser-induced reduced-graphene-oxide micro-optics patterned by femtosecond laser direct writing. Applied Surface Science, 2020, vol. 526, pp. 146647. https://doi.org/10.1016/j.apsusc.2020.146647 
  26. Gorbunov A.A., Eichler H., Pompe W., Huey B. Lateral self-limitation in the laser-induced oxidation of ultrathin metal films. Applied Physics Letters. 1996. vol. 69, no. 19. pp. 2816–2818. https://doi.org/10.1063/1.116853
  27. Shakhno E.A., Nguyen Q.D., Sinev D., Veiko V.P. Lateral proximity effect in direct laser thermochemical recording on thin titanium films. Optical and Quantum Electronics, 2023, vol. 55, no. 6, pp. 502. https://doi.org/10.1007/s11082-023-04801-0
  28. Shakhno E.A., Nguyen Q., Sinev D.A., Veiko V.P. Proximity-effect-related reduction of the minimum element size in thermochemical laser writing. Journal of Optical Technology, 2022, vol. 89, no. 6, pp. 312–319. https://doi.org/10.1364/JOT.89.000312
  29. Shakhno E.A., Sinev D.A., Kulazhkin A.M. Features of laser oxidation of thin films of titanium. Journal of Optical Technology, 2014, vol. 81, no. 5, pp. 298–302. https://doi.org/10.1364/JOT.81.000298 
  30. Veiko V.P., Shakhno E.A., Sinev D.A. Laser thermochemical writing: pursuing the resolution. Optical and Quantum Electronics, 2016, vol. 48, no. 6, pp. 322. https://doi.org/10.1007/s11082-016-0594-y
  31. Veiko V.P., Nguyen Q., Shakhno E.A., Sinev D.A., Lebedeva E.V. Physical similarity of the processes of laser thermochemical recording on thin metal films and modeling the recording of submicron structures. Optical and Quantum Electronics, 2019, vol. 51, no. 11, pp. 348. https://doi.org/10.1007/s11082-019-2073-8
  32. Veiko V.P., Zakoldaev R.A., Shakhno E.A., Sinev D.A., Nguyen Z.K., Baranov A.V., Bogdanov K.V., Gedvilas M., Raciukaitis G., Vishnevskaya L.V., Degtyareva E.N. Thermochemical writing with high spatial resolution on Ti films utilising picosecond laser. Optical Materials Express, 2019, vol. 9, no. 6, pp. 2729–2737. https://doi.org/10.1364/OME.9.002729
  33. Sinev D.A., Yuzhakova D.S., Moskvin M.K., Veiko V.P. Formation of the submicron oxidative LIPSS on thin titanium films during nanosecond laser recording. Nanomaterials, 2020, vol. 10, no. 11, pp. 2161. https://doi.org/10.3390/nano10112161 
  34. Nguyen Q., Shakhno E.A., Sinev D.A., Zakoldaev R.A., Veiko V.P. Forming microstructures of certain transparency on thin titanium films by laser thermochemical method. Journal of Physics: Conference Series, 2021. vol. 1822, no. 1, pp. 012006. https://doi.org/10.1088/1742-6596/1822/1/012006 
  35. Shakhno E.A., Nguyen Q., Sinev D.A., Matvienko E., Zakoldaev R.A., Veiko V.P. Laser thermochemical high-contrast recording on thin metal films. Nanomaterials, 2021, vol. 11, no. 1, pp. 67. https://doi.org/10.3390/nano11010067
  36. Xia F., Jiao L.P., Wu D., Li S., Zhang K., Kong W., Yun M., Liu Q., Zhang X. Mechanism of pulsed-laser-induced oxidation of titanium films. Optical Materials Express, 2019, vol. 9, no. 10, pp. 4097–4103. https://doi.org/10.1364/OME.9.004097
  37. Ibrahim Q., Andreeva Y., Suvorov A., Khmelenin D., Grigoryev E., Shcherbakov A.A., Sinev D. Laser fabrication of 1D and 2D periodic subwavelength gratings on titanium films. Optics and Laser Technology, 2024, vol. 174, pp. 110642. https://doi.org/10.1016/j.optlastec.2024.110642
  38. Poleshchuk A.G., Korolkov V.P., Sedukhin A.G., Sametov A.R., Shimanskii R.V. Direct laser writing of gray-scale microimages with a large dynamic range in chromium films. Optoelectronics, Instrumentation and Data Processing, 2015, vol. 51, no. 3, pp. 287–292. https://doi.org/10.3103/S8756699015030115
  39. Korolkov V.P., Sedukhin A.G., Mikerin, S.L. Technological and optical methods for increasing the spatial resolution of thermochemical laser writing on thin metal films. Optical and Quantum Electronics. 2019, vol. 51, no. 12, pp. 389. https://doi.org/10.1007/s11082-019-2111-6
  40. Guo C.F., Cao S., Jiang P., Fang Y., Zhang J., Fan Y., Wang Y., Xu W., Zhao Z., Liu Q. Grayscale photomask fabricated by laser direct writing in metallic nano-films. Optics Express, 2009, vol. 17, no. 22, pp. 19981–19987. https://doi.org/10.1364/OE.17.019981
  41. Guo C.F., Zhang J.M., Miao J.J., Fan Y.T., Liu Q. MTMO grayscale photomask. Optics Express, 2010, vol. 18, no. 3, pp. 2621–2631. https://doi.org/10.1364/OE.18.002621
  42. Xia F., Zhang X., Wang M., Yi S.M., Liu Q., Xu J.J. Numerical analysis of the sub-wavelength fabrication of MTMO grayscale photomasks by direct laser writing. Optics Express, 2014, vol. 22, no. 14, pp. 16889–16896. https://doi.org/10.1364/OE.22.016889
  43. Xia F., Zhang K., Li S., Yun M., Kong W., Zhang X., Liu Q. Simulation of the laser-induced oxidation process in fabricated Sn-MTMO grayscale photomasks. OSA Continuum, 2021, vol. 4, no. 1, pp. 65–71. https://doi.org/10.1364/OSAC.411797
  44. Xia F., Zhang X., Wang M., Liu Q., Xu J.J. Analysis of the laser oxidation kinetics process of In-In2O3 MTMO photomasks by laser direct writing. Optics Express, 2015, vol. 23, no. 22, pp. 29193–29201. https://doi.org/10.1364/OE.23.029193
  45. Korolkov V.P., Nasyrov R.K., Sametov A.R., Malyshev A.I., Belousov D.A., Mikerin S.L., Kuts R.I. Direct laser writing of high-NA computer-generated holograms on metal films of the titanium group and chromium. Proceedings of SPIE, 2019, vol. 11188, pp. 111880R. https://doi.org/10.1117/12.2537269
  46. Belousov D.A., Bronnikov K.A., Okotrub K.A., Mikerin S.L., Korolkov V.P., Terentyev V.S., Dostovalov A.V. Thermochemical Laser-Induced Periodic Surface Structures formation by femtosecond laser on Hf thin films in air and vacuum. Materials, 2021, vol. 14, no. 21, pp. 6714. https://doi.org/10.3390/ma14216714
  47. Korolkov V.P., Sedukhin A.G., Belousov D.A., Shimansky R.V., Khomutov V.N., Mikerin S.L., Spesivtsev E.V., Kutz, R.I. Increasing the spatial resolution of direct laser writing of diffractive structures on thin films of titanium group metals. Proceedings of SPIE, 2019, vol. 11030, pp. 110300A. https://doi.org/10.1117/12.2520978
  48. Ponkratova E.Y., Kuzmichev A.M., Rud D.A., Khubezhov S.A., Dolgintsev D.M., Ageev E.I., Veiko V.P., Sinev D.A., Zuev D.A. Nanosecond Laser-Assisted Fabrication of photocatalytically active TIO2 nanocoatings: Implication in organic dyes degradation. ACS Applied Nano Materials, 2024, vol. 7, no. 16, pp. 19268–19278. https://doi.org/10.1021/acsanm.4c03155
  49. Kozlova E., Kotlyar V. Ultrashort laser pulse focusing by amplitude and phase zone plates. Photonics, 2022, vol. 9, no. 9, pp. 662. https://doi.org/10.3390/photonics9090662
  50. Libenson M.N. Heating and destruction of thin films by quantum optical generator. Fizika i himija obrabotki materialov, 1968, no. 2, pp. 3–11. (in Russian) 


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2025 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика