Menu
Publications
2025
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
Editor-in-Chief

Nikiforov
Vladimir O.
D.Sc., Prof.
Partners
doi: 10.17586/2226-1494-2025-25-2-345-353
Korovkin N.V., Grishentsev A.Yu.
Complex power polynomials for solving the problem of identifying linear circuit parameters
Complex power polynomials for solving the problem of identifying linear circuit parameters
Read the full article

Article in Russian
For citation:
Abstract
For citation:
Korovkin N.V., Grishentsev A.Yu. Complex power polynomials for solving the problem of identifying linear circuit parameters. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2025, vol. 25, no. 2, pp. 345–353 (in Russian). doi: 10.17586/2226-1494-2025-25-2-345-353
Abstract
The identification of parameters of linear electrical circuits refers to the problems of analysis and inverse problems of electrical engineering. Modern research in this field mainly boils down to determining the impulse response and/or the transfer function of an electrical circuit. The tasks of identifying the parameters of linear electrical circuits are usually limited to identifying two or three linear components connected in series and/or in parallel, or as T- and U-shaped four poles. In this case, the parameters are identified by examining the circuit in short-circuit and idle modes. There are also several particular solutions to the problem of identification at a given frequency. In this paper, we propose a solution to the problem of identifying the parameters of linear electrical circuits using polynomials expressing complex power and additional equations. To solve the problem of identifying the parameters of a passive linear bipolar, a method has been developed for synthesizing basic equations using the difference in complex power, calculated analytically and calculated as a result of instrument measurements and represented by an interpolation polynomial. A method for synthesizing additional equations based on the frequency derivatives of complex resistance and complex conductivity has been developed. The upper bound of the number of independent equations is estimated as the power of the set of degrees at a circular frequency, which is part of the polynomial under study. Estimating the largest number of independent equations will allow us to conclude that the problem is solvable using the basic equations, as well as the need to form additional equations. The solutions to the problem of identifying the parameters of linear passive electrical circuits are implemented numerically using computer algebra. The practical application of the developed methods is shown by the numeric example. As an example of the application of the proposed methods, the solution of the problem of determining the parameters of all elements of an electrical circuit is shown. The simulation is implemented in the Wolfram Mathematica software environment. The proposed solution, unlike the known approaches, allows us to determine the parameters of the components of linear passive electrical circuits (bipolar). For the first time, a method for synthesizing equations based on differences in complex power obtained as a result of analytical calculations and instrument measurements is proposed. The method of synthesizing additional equations by differentiating complex resistances and conductivities by frequency makes it possible to obtain relatively simple forms of equations. Such equations can be synthesized in advance for the most common typical schemes.
Keywords: electrical engineering, radio electronics, radiophysics, automatic control theory, linear electrical circuits, parameter
identification, circuit analysis, CAD
Acknowledgements. This work was supported by the Ministry of Science and Higher Education of the Russian Federation, State Assignment no. 2019-0898.
References
Acknowledgements. This work was supported by the Ministry of Science and Higher Education of the Russian Federation, State Assignment no. 2019-0898.
References
-
Коровкин Н.В., Миневич Т.Г., Соловьева Е.Б. Определение электромагнитных параметров группы датчиков, предназначенных для измерений в активных средах или труднодоступных частях устройств и сооружений // Электротехника. 2023. № 3. С. 40–44. https://doi.org/10.53891/00135860_2023_3_40
-
Зуев А.Л.,Мишланов В.Ю., Судаков А.И., Шакиров Н.В., Фролов А.В.Эквивалентные электрические модели биологических объектов //Российский журнал биомеханики. 2012. Т. 16. № 1. С. 110–120.
-
Коровкин Н.В., Гришенцев А.Ю. Определение параметров элементов линейного N-полюсника по входным частотным характеристикам//Электричество. 2024. № 6. С. 48–57. https://doi.org/10.24160/0013-5380-2024-6-48-57
-
Демирчян К.С., Нейман Л.Р., Коровкин Н.В., Чечурин В.Л. Теоретические основы электротехники.Т. 1.СПб: Питер, 2006.463 с.
-
Гридин В.Н., Анисимов В.И., Алмаасали С.А. Применение метода диакоптики для моделирования и расчета больших систем //Проблемы управления. 2014. № 4. С. 9–13.
-
Герасимов И.В., Кузьмин С.А., Лозовой Л.Н., Никитин А.В. Основания технологии комплементарного проектирования наукоемких изделий. С-Пб.: Изд-во СПбГЭТУ «ЛЭТИ» 2010.196 с.
-
Гришенцев А.Ю., Гурьянов А.В., Кузнецова О.В., Шукалов А.В., Коробейников А.Г. Математическое обеспечение в системах автоматизированного проектирования. СПб.: Университет ИТМО, 2017. 88 с.
-
Крон Г. Исследование сложных систем по частям – диакоптика. М.: Наука, 1972. 544 с.
-
Бутырин П.А., Гришкевич А.А. Минимальные структуры математических моделей электрических цепей//Электричество.1992. № 2.С. 11–21.
-
Бутырин П.А., Васьковская Т.А. Принципы декомпозиции сложных электрических цепей при их диагностике по частям// Электричество.2001. № 6.С. 41–48.
-
Курганов С.А., Филаретов В.В. Неявный принцип наложения воздействий в линейных электрических цепях//Электричество. 2005. № 1. С. 45–60.
-
Tang R., Zhu W., He Y. Research on anomaly identification of PV power station operation data based on fuzzy association rules // IEEE Access. 2024. V. 12. P. 156662–156672. https://doi.org/10.1109/ACCESS.2024.3485082
-
Uyanik I., Saranli U., Ankarali M.M., Cowan N.J., Morgül Ö. Frequency-Domain subspace identification of Linear Time-Periodic (LTP) systems // IEEE Transactions on Automatic Control. 2019. V. 64. N 6. P. 2529–2536. https://doi.org/10.1109/TAC.2018.2867360
-
Tachibana H., Tanaka N., Maeda Y., Iwasaki M. Comparisons of Frequency Response Function identification methods using single motion data: time- and frequency-domain approaches // Proc. of the IEEE International Conference on Mechatronics (ICM). 2019. P. 498–503. https://doi.org/10.1109/ICMECH.2019.8722867
-
Tepljakov A., Petlenkov E., Belikov J. Grey box identification of fractional-order system models from frequency domain data // Proc. of the 41st International Conference on Telecommunications and Signal Processing (TSP). 2018. P. 1–4, https://doi.org/10.1109/TSP.2018.8441247
-
Коровкин Н.В., Гришенцев А.Ю., Миневич Т.Г. Исследование обусловленности задачи определения параметров линейного N-полюсника по входным частотным характеристикам // Журнал радиоэлектроники. 2024. № 10. С. 16. https://doi.org/10.30898/1684-1719.2024.10.12
-
Тихонов В.И. Статистическая радиотехника. М.:Радио и связь, 1982. 624 с.
-
Левин Б.Р. Теоретические основы статистической радиотехники. М.: Радио и связь,1989. 656 с.
-
Демидович Б.П., Марон И.А. Основы вычислительной математики. М.: Наука,1969. 664 с.
-
Волков Е.А. Вычисление значений многочлена. М.: Наука, 1987. 248 с.
-
Дёч Г. Руководство к практическому применению преобразования Лапласа и Z-преобразования. М.: Наука, 1971. 288 с.
-
Ильин В.А., Поздняк Э.Г. Основы математического анализа. Ч. 2. М.: Физматлит,2001. 464 с.