2O3-ZrO2-SiO2 system materials "> 2O3-ZrO2-SiO2 system materials " /> 2O3-ZrO2-SiO2 system materials ">

doi: 10.17586/2226-1494-2025-25-3-387-395


Intensification of sol-gel synthesis of Mn-containing MgO-Al2O3-ZrO2-SiO2 system materials

S. K. Evstropiev, V. L. Stolyarova, D. V. Bulyga, A. S. Saratovskii, N. B. Knyazyan, G. G. Manukyan


Read the full article  ';
Article in Russian

For citation:

Evstropiev S.K., Stolyarova V.L., Bulyga D.V., Saratovskii A.S., Knyazyan N.B., Manukyan G.G. Intensification of sol-gel synthesis of Mn-containing MgO-Al2O3-ZrO2-SiO2 system materials. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2025, vol. 25, no. 3, pp. 387–395 (in Russian). doi: 10.17586/2226-1494-2025-25-3-387-395



Abstract

Glass and glass-crystalline MgO-Al2O3-SiO2 system materials have many practical applications including their use as luminophores. To lower the synthesis temperature of such materials is an actual task. In this work, Mn-containing materials of MgO-Al2O3-ZrO2-SiO2 system were synthesized by sol-gel method. The analytical chemical composition, crystal structure, morphology and luminescence spectra were investigated by X-ray phase analysis, scanning electron microscopy, energy dispersive analysis and luminescence spectroscopy. It was found that the introduction of fluoride component into sols significantly accelerates the crystallization of Mn-containing gels during their heat treatment and has a significant effect on the morphology of xerogels. Fluorides play the role of additional nucleation centers and ensure the formation of numerous small oxide crystals. Energy dispersive analysis showed that fluoride is completely removed from the structure of materials during heat treatment of gels up to 900 °C. According to the data of X-ray phase analysis, the introduction of manganese ions into the structure of forming oxide crystals and deformation of their crystal lattice occurs at the initial stages of the crystallization process. Emission bands of both manganese ions and structural defects formed in the crystal lattice of oxide crystals are observed in the photoluminescence spectra of xerogels. It was shown that in addition to using the sol-gel method, which is a well-known approach, the addition of fluorine-containing precursor significantly accelerates crystallization of gels of MgO-Al2O3-ZrO2-SiO2 system, promotes formation of dispersed structure of materials, increases intensity, and improves resolution of emission bands in luminescence spectra.


Keywords: sol-gel method, thermal treatment, structural defects, luminescence, fluorine

References
1. Chen G.-H., Liu X.-Y. Sintering, crystallization and properties of MgO-Al2O3-SiO2 system glass-ceramics containing ZnO. Journal of Alloys and Compounds, 2007, vol. 431, no. 1-2, pp. 282–286. https://doi.org/10.1016/j.jallcom.2006.05.060
2. Bortkevich A.V., Dymshits O.S., Zhilin A.A., Polushkin A.Yu., Tsenter M.Ya., Shashkin A.V., Golubkov V.V., B’en V.-B., Li K.-K., Pak E.-B., Pak K.H. Study of phase transformations in titanium-containing magnesium-aluminum silicate glasses and glass-ceramics for diffuse reflectors. Journal of Optical Technology, 2002, vol. 69, no. 8, pp. 558–594. https://doi.org/10.1364/JOT.69.000588
3. Evstropiev S.K., Yurchenko D.A., Stolyarova V.L., Knyazyan N.B., Manukyan G.G., Shashkin A.V. Some features of the surface modification of MgO-Al2O3-TiO2-SiO2 glass and glass ceramics by Ag diffusion. Ceramics International, 2022, vol. 48, no. 17, pp. 24517–24522. https://doi.org/10.1016/j.ceramint.2022.05.090
4. Guo X., Yang H. Effects of fluorine on crystallization, structure and performances of lithium aluminosilicate glass ceramic. Materials Research Bulletin, 2006, vol. 41, no. 2, pp. 396–405. https://doi.org/10.1016/j.materresbull.2005.08.002
5. Guo H., Liu X.Y., Li F., Wei R.F., Wei Y.L., Ma C. Enhanced white luminescence in mixed-valence Eu-doped BaAl2Si2O8 glass ceramics for W-LEDs. Journal of the Electrochemical Society, 2012, vol. 159, no. 6, pp. J223–J226. https://doi/org/10.1149/2.jes113286
6. Evstropiev S.K., Shashkin A.V., Knyazyan N.B., Manukyan G.G., Bagramyan V.V., Timchuk A.V., Stolyarova V.L. Eu-doped BaO-Al2O3-SiO2-MgF2 glass and glass ceramics. Journal of Non-Crystalline Solids, 2022, vol. 580, pp. 121386. https://doi.org/10.1016/j.jnoncrysol.2021.121386
7. Evstrop'ev S.K., Volynkin V.M., Saratovskii A.S., Danilovich D.P., Demidov V.V., Dukel'skii K.V., Bulyga D.V., Sysolyatin S.O. Modification of quartz ceramics by applying a sol-gel composition of MgO-Al2O3-ZrO2-SiO2 system. Russian Journal of Applied Chemistry, 2023, vol. 96, no. 2, pp. 190–197. https://doi.org/10.1134/S1070427223020090
8. Petrović R., Janaćkocić D., Zec S., Drmanić S. Ž., Kostić-Gvozdenović L.J. Crystallization behavior of alkoxy-derived cordierite gels. Journal of Sol-Gel Science and Technology, 2003, vol. 28, no. 1, pp. 111–118. https://doi.org/10.1023/A:1025649406466
9. Dittmer M., Rüssel C. Colorless and high strength MgO/Al2O3/SiO2 glass-ceramic dental material using zirconia as nucleating agent. Journal of Biomedical Materials Research Part B Applied Biomaterials, 2012, vol. 100, no. 2, pp. 463–470. https://doi.org/10.1002/jbm.b.31972
10. Ni S., Chou L., Chang J. Preparation and characterization of forsterite (Mg2SiO4) bioceramics. Ceramics International, 2007, vol. 33, no. 1, pp. 83–88. https://doi.org/10.1016/j.ceramint.2005.07.021
11. Khaidukov N.M., Brekhovskikh M.N., Kirikova N.Yu., Kondratyuk V.A., Makhov V.N. Luminescence of MgAl2O4 and ZnAl2O4 spinel ceramics containing some 3d ions. Ceramics International, 2020, vol. 46, no. 13, pp. 21351–21359. https://doi.org/10.1016/j.ceramint.2020.05.231
12. Lukić S.R., Petrović D.M., Dramićanin M.D., Mitrić M., Dačanin Lj., Optical and structural properties of Zn2SiO4:Mn2+ green phosphor nanoparticles obtained by a polymer-assisted sol-gel method. Scripta Materialia, 2008. vol. 58, no. 8, pp. 655–658. https://doi.org/10.1016/j.scriptamat.2007.11.045
13. Omri K., El Ghoul J., Alyamani A., Barthou C., El Mir L. Luminescence properties of green emission of SiO2/Zn2SiO4:Mn nanocomposite prepared by sol-gel method. Physica E: Low-dimensional Systems and Nanostructures, 2013, vol. 53, pp. 48–54. https://doi.org/10.1016/j.physe.2013.04.020
14. Kullberg A.T.G., Lopes A.A.S., Monteiro R.C.C. Effect of ZnF2 addition on the crystallization behaviour of a zinc borosilicate glass. Journal of Non-Crystalline Solids, 2017, vol. 468, pp. 100–104. https://doi.org/10.1016/j.jnoncrysol.2017.04.030
15. Kan A., Hirabayashi R., Takahashi S., Ogawa H. Low-temperature crystallization and microwave dielectric properties of forsterite generated in MgO-SiO2 system following LiF addition. Ceramics International, 2023, vol. 49, no. 6, pp. 9883–9892. https://doi.org/10.1016/j.ceramint.2022.11.163
16. Yoon S., Otal E.H., Maegli A.E., Karvonen L., Matam S.K., Ebbinghaus S.G., Walfort B., Hagemann H., Pokrant S., Weidenkaff A. Improved persistent luminescence of CaTiO3:Pr by fluorine substitution and thermochemical treatment. Journal of Alloys and Compounds, 2014, vol. 613, pp. 338–343. https://doi.org/10.1016/j.jallcom.2014.06.041
17. Yu Y., Wang H., Li L., Chen Y., Zeng R. Effects of various fluxes on the morphology and optical properties of Lu3-xAl512:xCe3+ green phosphors. Ceramics International, 2014, vol. 40, no. 9, part A., pp. 14171-14175. https://doi.org/10.1016/j.ceramint.2014.06.004
18. Wang H., Mao F., Liu Y., Jiang X., Ma B., Wei L., Wu F., Li L. Effect of fluxes on luminescence properties of color-tunable Ba1,3Ca0,7SiO4:Eu2+,Mn2+ phosphor for Near-Ultraviolet white-LEDs. Materials Research Bulletin, 2020, vol. 125, pp. 110808. https://doi.org/10.1016/j.materresbull.2020.110808
19. Fujihara S., Koji S., Kimura T. Structure and optical properties of (Gd,Eu)F3-nanocrystallized sol-gel silica films. Journal of Materials Chemistry, 2004, vol. 14, no. 8, pp. 1331–1335. https://doi.org/10.1039/b313784h
20. Evstropiev S.K., Stolyarova V.L., Saratovskii A.S., Bulyga D.V., Dukelskii K.V., Knyazyan N.B., Yurchenko D.A. Luminescent Mn2+-Doped MgO–Al2O3–ZrO2–SiO2 Sol–Gel Materials. Russian Journal of Inorganic Chemistry, 2024, vol. 69, no. 3, pp. 385–391. https://doi.org/10.1134/S0036023623603446
21. Khaidukov N.M., Brehovskikh M.N., Kirikova N.Yu., Kondratyuk V.A., Makhov V.N., Luminescence properties of spinels doped with manganese ions. Russian Journal of Inorganic Chemistry, 2020, vol. 65, no. 8, pp. 1135–1141. https://doi.org/10.1134/S0036023620080069
22. Song E., Zhou Y., Wei Y., Han X., Tao Z., Qiu R., Xia Z., Zhang Q. A thermally stable narrow-band green-emitting phosphor MgAl2O4:Mn2+ for wide color gamut backlight display application. Journal of Materials Chemistry C, 2019, vol. 7, no. 27, pp. 8192–8198. https://doi.org/10.1039/c9tc02107h
23. El Ghoul J., Omri K., Alyamani A., Barthou C., El Mir L. Synthesis and luminescence of SiO2/Zn2SiO4 and SiO2/Zn2SiO4:Mn composite with sol-gel methods. Journal of Luminescence, 2013, vol. 138, pp. 218–222. https://doi.org/10.1016/j.jlumin.2013.02.009
24. Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 1976, vol. 32, no. 5, pp. 751–767. https://doi.org/10.1107/s0567739476001551
25. Fidalgo A., Ilharco L.M., The defect structure of sol-gel-derived silica/polytetrahydrofuran hybrid films by FTIR. Journal of Non-Crystalline Solids, 2001, vol. 283, no. 1-3, pp. 144–154. https://doi.org/10.1016/S0022-3093(01)00418-5
26. Sawai S., Uchino T. Visible photoluminescence from MgAl2O4 spinel with cation disorder and oxygen vacancy. Journal of Applied Physics, 2012, vol. 112, no. 10, pp. 103523. https://doi.org/10.1063/1.4767228
27. Dlamini C., Mhlongo M.R., Koao L.F., Motaung T.E., Hlatshwayo T.T., Motloung S.V. The effects of varying the annealing period on the structure, morphology and optical properties of MgAl2O4:0.1% Mn2+ nanophosphors. Applied Physics A, 2020, vol. 126, no. 1, pp. 75. https://doi.org/10.1007/s00339-019-3248-7
28. Sandeep K.M., Bhat S., Dharmaprakash S.M. Structural defects and photoluminescence studies of sol-gel prepared ZnO and Al-doped ZnO films. Applied Physics A, 2016, vol. 122, no. 11, pp. 975. https://doi.org/10.1007/s00339-016-0512-y
29. Wang Y.K., Xie X., Zhu C.G. Self-propagating high-temperature synthesis of magnesium aluminate spinel using Mg-Al alloy. ACS Omega, 2022, vol. 7, no. 15, pp. 12617–12623. https://doi.org/10.1021/acsomega.1c06583
30. Lin J., Huang Y., Zhang J., Shi F., Wei S., Gao J., Ding X., Tang C. Synthesis and photoluminescence properties of MgAl2O4:Mn2+ hexagonal nanoplates. Materials Research Bulletin, 2009, vol. 44, no. 1, pp. 106-109. https://doi.org/10.1016/j.materresbull.2008.03.031
31. Taghavia N., Lerondel G., Makino H., Yamanoto A., Yao T., Kawazoe Y., Golo T., Growth of luminescent Zn2SiO4:Mn2+ particles inside oxidized porous silicon: emergence of yellow luminescence. Journal of Crystal Growth, 2002, vol. 237-238, part 1, pp. 869–873. https://doi.org/10.1016/S0022-0248(01)02041-3
32. Jiang Y., Chen J., Xie Z., Zheng L. Syntheses and optical properties of α- and β-Zn2SiO4:Mn nanoparticles by solvothermal method in ethylene glycol-water system. Materials Chemistry and Physics, 2010, vol. 120, no. 2-3, pp. 313–318. https://doi.org/10.1016/j.matchemphys.2009.11.002


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2025 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика