Keywords: cellular automata, genetic algorithms
References
1. Frisch U., d'Humières, D., Hasslacher B., Lallemand P., Pomeau Y., Rivet J.-P. Latticegas hydrodynamics in two and three dimensions. Complex Systems, 1987, vol. 1, no. 4, pp. 649–707.
2. Wolfram S. Cellular automation fluids 1: Basic theory. Journal of Statistical Physics, 1986, vol. 45, no. 3-4, pp. 471–526. doi: 10.1007/BF01021083
3. Vose M.D., Wright A.H. Simple genetic algorithms with linear fitness. Evolutionary Computation, 1994, vol. 2, no. 4, pp. 347-368. doi: 10.1162/evco.1994.2.4.347
4. Vose M.D. A Critical Examination of the Schema Theorem. Technical Report UT-CS-93212. University of Tennessee, 1993. Available at: http://citeseer.ist.psu.edu/129900.html (accessed 20.02.2014).
5. Vose M.D., Wright A.H. The simple genetic algorithm and the Walsh transform. Part I. Theory. Evolutionary Computation, 1998, vol. 6, no. 3, pp. 253-273. doi: 10.1162/evco.1998.6.3.253
6. Das R., Crutchfield J.P., Mitchell M., Hanson J.E. Evolving globally synchronized cellular automata. Proceedings of the Sixth International Conference on Genetic Algorithms. San Francisco, USA, 1995, pp. 336–343.
7. Psakhie S.G., Horie Y., Ostermeyer G.P., Korostelev S.Yu., Smolin A.Yu., Shilko E.V., Dmitriev A.I., Blatnik S., Spegel M., Zavsek S. Movable cellar automata method for simulating materials with mesostructure. TheoreticalandAppliedFractureMechanics, 2001, vol. 37, pp. 311-334. doi: 10.1016/S0167-8442(01)00079-9
8. SkakovP.S. Klassifikatsiyapovedeniyaodnomernykhkletochnykhavtomatov. Magisterskaya dissertatsiya[Classification of one-dimensional cellular automata behavior. Master's thesis]. SPbSU ITMO, 2007. Available at:http://is.ifmo.ru/papers/_skakov_master.pdf(accessed 20.02.2014).
9. Panchenko E.V., Ul’yantsev V.I. Primenenie metodov resheniya zadachi o vypolnimosti kvantifitsirovannoi bulevoi funktsii dlya postroeniya upravlyayushchikh konechnykh avtomatov po stsenariyam raboty i temporal’nym svoistvam [Quantified Boolean function satisfiability solving methods application to extended finite-state machine creation based on scenarios and temporal properties]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2013, no. 4 (86), pp. 151–153.
10. Bedny Yu.D. Primenenie geneticheskikh algoritmov dlya postroeniya kletochnykh avtomatov [Application of genetic algorithms for the construction of cellular automata]. Available at: http://is.ifmo.ru/papers/genalgcelaut.pdf (accessed 20.02.2014).
11. Tsarev F.N., Shalyto A.A. Primenenie geneticheskogo programmirovaniya dlya generatsii avtomata v zadache ob “umnom murav’e” [Application of genetic programming for generation of a control system in “Artificial Ant” problem]. Available at: http://is.ifmo.ru/genalg/_ant_ga.pdf (accessed 20.02.2014).
12. Tikhomirov A.V., Shalyto A.A. Primenenie adaptivnogo geneticheskogo algoritma dlya generatsii kletochnykh avtomatov [Genetic programming application for cellular automata generation]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2012, no. 1 (77), pp. 100–105.
13. Tikhomirov A.V., Shalyto A.A. Primenenie geneticheskogo podkhoda dlya generatsii kletochnykh avtomatov [Genetic approach for cellular automata generation]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2011, no. 2 (72), pp. 62–66.
14. Toffoli T., Margolus N. Cellular automata machines: a new environment for modeling. Cambridge: MIT Press, 1987.
15. von Neumann J. Theory of self-reproducing automata. Urbana and London, University of Illinois Press, 1966, 403 p.
16. Naumov L.A. Metod vvedeniya obobshchennykh koordinat i instrumental’noe sredstvo dlya avtomatizatsii proektirovaniya programmnogo obespecheniya vychislitel’nykh eksperimentov s ispol’zovaniem kletochnykh avtomatov. Diss. kand.tekhn. nauk [The method of generalized coordinates leading and tool for software design automation for computational experiments using cellular automata. PhD eng. sci. diss] St. Petersburg, 2007, 283 p.