NETWORK SERVICES FOR DIAGNOSTIC OPTODIGITAL COMPLEX FOR TELEMEDICINE

D. S. Kopylov, S. N. Ustinov, A. A. Skshidlevsky, A. V. Lyamin


Read the full article  ';
Article in Russian


Abstract

The paper deals with a result of the network services development for the optodigital complex for telemedicine diagnostics. This complex is designed for laboratory and clinical tests in health care facilities. Composition of network services includes the following: a client application for database of diagnostic test, a web-service, a web interface, a video server and microimage processing server. Structure of these services makes it possible to combine set of software for transferring depersonalized medical data via the Internet and operating with optodigital devices included in the complex. Complex is consisted of three systems: micro-vision, endoscopic and network. The micro-vision system includes an automated digital microscope with two highly sensitive cameras which can be controlled remotely via the Internet. The endoscopic system gives the possibility to implement video broadcasting to remote users both during diagnostic tests and also off-line after tests. The network system is the core of the complex where network services and application software are functioning, intended for archiving, storage and providing access to the database of diagnostic tests. The following subjects are developed and tested for functional stability: states transfer protocol, commands transfer protocol and video-stream transfer protocol from automated digital microscope and video endoscope. These protocols can work in web browsers on modern mobile devices without additional software.


Keywords: web-application, telemedicine, network services, DICOM-server, digital images, information security

References
1.     Marttos A.C., Kuchkarian F.M., Abreu-Reis P., Pereira B., Collet-Silva F.S., Fraga G.P. Enhancing trauma education worldwide through telemedicine. World Journal of Emergency Surgery, 2012, vol. 7, p. S4. doi: 10.1186/1749-7922-7-S1-S4
2.     Barroso M.C., Esteves G.P., Nunes T.P., Silva L.M.G., Faria A.C.D., Melo P.L. A telemedicine instrument for remote evaluation of tremor: design and initial applications in fatigue and patients with Parkinson's Disease. BioMedical Engineering OnLine, 2011, vol. 10, p. 14. doi:10.1186/1475-925X-10-14
3.     Kyriacou E., Pavlopoulos S., Berler A., Neophytou M., Bourka A., Georgoulas A., Anagnostaki A., Karayiannis D., Schizas C., Pattichis C., Andreou F., Koutsouris D. Multi-purpose HealthCare Telemedicine Systems with mobile communication link support. BioMedical Engineering OnLine, 2003, vol. 2, p. 7.  doi: 10.1186/1475-925X-2-7
4.     Lyadov M.A., Trufanov D.N., Frolov S.Vl., Frolova M.S. Organizatsiya telemeditsinskogo tsentra na base tambovskogo gosudarstvennogo tekhnicheskogo universiteta [Organization of telemedicine center at the Tambov State Technical University]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2008, no. 1 (46), pp. 203–210.
5.     Golovin P.A., Hechaev V.A., Nechaev D.A. Ekspertnye sistemy dlya klassifikatsii boleznei v meditsinskoi diagnostike [Expert systems for classification of diseases in medical diagnosis]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2006, no. 6 (29), pp. 80–84.
6.     GOST R 52636-2006 Electronnaya istoriya bolezni. Obshchie polozheniya[State Standard 52636-2006 Electronic medical case history. General provisions]. Moscow, Izdatel'stvo standartov Publ., 20 p.
7.     Gurov O.P., Potapov A.S., Lyamin A.V., Skshidlevskiy A.A., Nikiforov V.O., BelashenkovN.P., Rudin Y.V., Varlamova L.L. Diagnostic optodigital complex for telemedicine. Journal of Optical Technology, 2012, vol. 79, no. 11, pp. 712–715.
8.     Lyamin A.V., Skshidlevskiy  A.A., Kopylov D.S. Razrabotka sistemy setevogo optico-tsifrovogo diagnosticheskogo kompleksa dlya telemeditsiny [Development of optodigital network diagnostic complex for telemedicine]. Trudy XIX Vserossiiskoi nauchno-metodicheskoi konferentsii “Telematika’2012” [Proc. of All-Russion Scientific and methodical conferences “Telematika’2012"]. St. Petersburg, 2012. Т. 2. С. 294–295.
9.     Rojo M.G., Garcia G.B., Mateos C.P., Gonzalez J., Vicente M.C. Critical comparison of 31 commercially available digital slide systems in pathology. International Journal of Surgical Pathology, 2006, vol. 4, pp. 285–305. doi:10.1177/1066896906292274
10.  Dyrnayev A.V. Metod podscheta eritrotsitov na izobrazheniyakh mazkov krovi [Red cells count method on blood smears images]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2011, no. 6 (76), pp. 17–22.
11.  Averkin A.N., Potapov A.S. Using the method of depth reconstruction from focusing for microscope images. Journal of Optical Technology, 2011, vol. 78, no. 11, pp. 730–734. doi: 10.1364/JOT.78.000730
12.  Kopylov D.S. Sistema edinogo vkhoda v geterogennykh obrazovatel’nykh sistemakh [Single sign on in heterogeneous educational systems]. Sbornik tezisov dokladov kongressa molodykh uchenykh [Collection of papers of young scientists congress]. St. Petersburg, NTUITMOPubl., 2012, part1, pp. 3–4.


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика