THERMAL SIMILARITY OF SPACE OBJECTS OF STANDARD CONFIGURATIONS

A. M. Dzitoev, S. I. Khankov


Read the full article  ';
Article in Russian


Abstract

Thermal similarity of objects of various configuration is defined by equality of their stationary surface average temperatures in the Earth shadow that is equivalent to equality of their effective irradiance coefficients by own thermal radiation of the Earth. Cone, cylinder and sphere are chosen among standard configurations. Unlike two last figures, calculation of irradiance coefficient for conic object is the most difficult and contains a number of uncertainties. The method of calculation for integrated and effective irradiance coefficients of space object with a conic form is stated which is typical for fragments of spacecrafts. Integrated irradiance coefficients define the average thermal balance on a lateral surface of the cylinder and cone, and also full power balance on a sphere surface. Effective irradiance coefficients define a full falling specific stream of the Earth’s radiation on the whole surface of cylindrical or conic object taking into account their bases. By data about effective irradiance coefficients, the average stationary temperatures of space objects in the Earth shadow are defined, as well as on the trajectory part illuminated by the Sun taking into account two additional components of power balance – direct sunlight and reflected by the Earth. Researches were conducted in the height change range for an orbit from 200 to 40000 km depending on a tilt angle of the cylinder and cone axis relative to zenith-nadir line. Similarity conditions for the cylinder and cone are defined at equal ratio sizes of the figure height to base diameter.


Keywords: space object of the conic, cylindrical and spherical form, effective irradiance coefficient of space object, specific thermal stream of the Earth’s radiation, thermal balance of space object, thermal similarity of space objects

References
1.     Modelirovanie teplovykh rezhimov kosmicheskogo apparata i okruzhayushchei ego sredy[Modeling of the thermal regimes of the spacecraft and its environment]. Ed. G.P. Petrov. Moscow, Mashinostroenie Publ, 1971, 382 p.
2.     Duboshin G.N. Nebesnaya mekhanika. Osnovnye zadachi i metody [Celestial mechanics. The main tasks and methods]. Moscow, Nauka Publ., 1968, 800 p.
3.     Chebotarev G.A. Analiticheskie i chislennye metody nebesnoi mekhaniki [Analytical and numerical methods of celestial mechanics]. Moscow–Leningrad, Nauka Publ., 1965, 367 p.
4.     Smart W.M. Celestial Mechanics.NY,John Wiley, 1961, 381 p. (Russ. ed.: Smart U.M. Nebesnaya mekhanika. Moscow, Mir Publ., 1965, 502 p.)
5.     DzitoevA.M.,Hankov S.I. Metodika rascheta koeffitsientov obluchennosti tsilindricheskogo kosmicheskogo obˊekta podsvetkoi Zemli[Calculation methods for irradiance coefficients of cylindrical space object by the Earth radiation]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2014, no. 1 (89), pp. 145–150.
6.     KamenevA.A., Lapovok Ye.V., Khankov S.I. Analiticheskie metody rascheta teplovykh rezhimov i kharakteristik sobstvennogo teplovogo izlucheniya ob"ektov v okolozemnom kosmicheskom prostranstve [Analytical methods for calculating the thermal conditions and the characteristics of the intrinsic thermal radiation of objects in near-Earth space]. St. Petersburg, L.T. Tuchkov Scientific Technical Center, 2006, 186 p.
7.     BayovaYu.V., Lapovok Ye.V., Hankov S.I. Metodika rascheta nestatsionarnykh temperatur kosmicheskogo ob’ekta na krugovykh orbitakh [A method for calculation of non-stationary temperature of space object on a circular orbit]. Izv. vuzov. Priborostroenie, 2013, vol. 56, no. №12, pp. 51–56.
8.     BayovaYu.V., Lapovok Ye.V., Hankov S.I. Metodika rascheta nestatsionarnykh temperatur kosmicheskogo ob"ekta, dvizhushchegosya po ellipticheskoi orbite [Calculation method of the transient temperatures for moving space object on the elliptical orbit]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2013, no. 6 (88), pp. 67–72.
9.     BayovaYu.V., Lapovok Ye.V., Hankov S.I. Analytical technique for calculating the heat flexes in near-Earth space that form the thermal regime of space telescopes. Journal of Optical Technology, 2013, vol. 80, no 5, pp. 283–288. doi: 10.1364/JOT.80.000283
10.  Bayova Yu.V., Lapovok Ye.V., Khankov S.I. Metod podderzhaniya zadannogo temperaturnogo diapazona kosmicheskogo apparata, dvizhushchegosya po krugovoi orbite s zakhodom v ten' Zemli [Method of maintaining the specified temperature range of the spacecraft moving in a circular orbit with entering the Earth's shadow]. Izv. vuzov. Priborostroenie, 2013, vol. 56, no. 7, pp. 56–61.
11.  Keihl J.T., Trenberth K.E. Earth’s annual global mean energy budget. Bulletin of the American Meteorological Society, 1997, vol. 78, no. 2, pp. 197–208.
12.  Trenberth K.E., Fasullo J.T., Keihl J. Earth's global energy budget. Bulletin of the American Meteorological Society, 2009, vol. 90, no. 3, pp. 311–323.


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2025 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика