D. S. Gromov

Read the full article  ';
Article in Russian


It is known, that temperature perturbations and thermal modes have significant influence on the accuracy of a fiber-optical gyroscope. Nowadays, thermal perturbations are among the main problems in the field of navigation accuracy. Review of existing methods for decrease of temperature influences on the accuracy of a strapdown inertial navigation system with fiberoptical gyros showed, that the usage of constructive and compensation methods only is insufficient and, therefore, thermostabilization is required. Reversible thermostabilization system is offered, its main executive elements are thermoelectric modules (Peltier’s modules), heat transfer from which is provided by heatsinks at work surfaces of modules. This variant of thermostabilization maintenance is considered; Peltier’s modules and temperature sensors for the system are chosen. Parameters of heatsinks for heat transfer intensification are calculated. Fans for necessary air circulation in the device are chosen and thickness of thermal isolation is calculated. Calculations of thermal modes of navigation system with thermostabilization are made in modern software Autodesk Simulation CFD. Comparison of results for present and previous researches and calculations shows essential decrease in gradients of temperature on gyro surfaces and better uniformity of temperature field in the whole device. Conclusions about efficiency of the given method usage in view of accuracy improvement of navigation system are made. Thermostabilization provision of a strapdown inertial navigation system with fiberoptical gyros is proved. Thermostabilization application in combination with compensational methods can reach a necessary accuracy of navigation system.

Keywords: fiber-optical gyro, navigation, thermal protection, thermostabilization, thermal mode, accuracy

1.          Peshekhonov V.G. Gyroscopic systems: current status and prospects. Gyroscopy and Navigation, 2011, vol. 2, no.3, pp. 111–118. doi: 10.1134/S2075108711030096
2.          Lefévre H.C. The fiber-optic gyroscope: Achievement and perspective. Gyroscopy and Navigation, 2012, vol. 3, no. 4, pp. 223-226. doi:  10.1134/S2075108712040062
3.          Dzhashitov V.E., Pankratov V.M. Datchiki, pribory i sistemy aviakosmicheskogo i morskogo priborostroeniya v usloviyakh teplovykh vozdeistvii [Sensors, instruments and systems of aerospace and marine instrumentmaking in terms of thermal effects]. St. Petersburg, CNII Elektropribor Publ., 2005, 404 p.
4.          Shen C., Chen X. Analysis and modeling for fiber-optic gyroscope scale factor based on environment temperature. Applied Optics, 2012, vol. 51, no. 14, pp. 2541–2547. doi: 10.1364/AO.51.002541
5.          Dranitsyna E.V., Egorov D.A., Untilov A.A., Deineka G.B., Sharkov I.A., Deineka I.G. Reducing the effect of temperature variations on FOG output signal. Gyroscopy and Navigation, 2012, vol. 4, no. 2, pp. 92–98. doi: 10.1134/S2075108713020041
6.          Kolevatov A.P., Nikolaev S.G., Andreyev A.G, Ermakov V.S., Kel O.L., Shevtsov D.I.  Volokonno-opticheskii giroskope besplatformennykh inertsial’nykh system navigatsionnogo klassa. Razrabotka, termokompensatsiya, ispytaniya [Fiber optical gyroscope of navigation class strapdown inertial systems. Development, tem perature compensation, and tests]. Gyroscopy and Navigation, 2010, no. 3, pp. 49–60. 
7.          Dzhashitov V.E., Pankratov V.M., Barulina M.A. Mathematical models of thermal stress-strain state and scale factor error of fiber optic gyro sensors. Journal of Machinery Manufacture and Reliability, 2013, vol. 42, no. 2, pp. 124–131. doi: 10.3103/S1052618813020040
8.          Gromov D.S., Sharkov A.V. Teplovye rezhimy giroskopicheskikh priborov na baze volokonno-opticheskikh giroskopov [Heat regimes of gyroscopic instruments on the base of fiber optical gyroscopes]. Izv. vuzov. Priborostroenie, 2013, vol. 56, no. 1, pp. 62–67.
9.          Gromov D.S., Untilov A.A., Chapurskyi A.P. Issledovanie teplovykh rezhimov giroskopicheskikh priborov na baze volokonno-opticheskikh giroskopov [Investigation of thermal modes of gyroscopic devices based on fiber-optic gyroscopes] // Materialy ХIV konferentsii molodykh uchenykh “Navigatsiya i upravlenie dvizheniem»[Proc. ХIV conference of young scientists “Navigation and motion control”] / Ed. O.A. Stepanov, V.G. Peshekhonov. St. Petersburg, CNIIElektropriborPubl., 2012, pp. 453–459.
10.       Kurbatov A.M., Kurbatov R.A. Methods of improving the accuracy of fiber-optic gyros. Gyroscopy and Navigation, 2012, vol. 3, no.2, pp. 132–143. doi: 10.1134/S2075108712020071
11.       Vahrameev E.I., Galyagin K.S., Ivonin A.S., Oshivalov M.A. Prognoz i korrektsiya teplovogo dreifa volokonno-opticheskogo giroskopa [Prediction and Correction of Fiber-Optic Gyroscope Thermal Drift]. Izv. vuzov. Priborostroenie, 2013, vol. 56, no. 5, pp. 79–84.
12.       Berman Z.M., Kanushin V.M., Mironov Yu.V. Mokhov V.P., Sharygin V.P., Sharygin B.L. Inertial and stabilization navigation system "Ladoga-M": results of the development andtesting. GyroscopyandNavigation, 2002, no. 4 (39), pp. 29–38. (InRussian)
13.       Dzhashitov V.E., Pankratov V.M.  Application of elementary balances method for the analysis and synthesis of the thermal control system based on Peltier’s modules for SINS on FOG. Gyroscopy and Navigation, 2013, no. 2 (81), pp. С. 84–103.(In Russian)
14.       Kryotherm. Thermoelectric, Peltier cooler. Available at: (accessed 19.12.2013).
15.       Takhistov F.Yu. Metodika vybora konstruktivnykh i rezhimnykh parametrov termoelektricheskogo termostata s neizotermicheskoi kameroi [Selection methodology of the design and conditions selection for termoelectric thermostat with non-isothermal chamber]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2006, no. 3 (26), pp. 263–267.
16.       Autodesk. Programmnoe obespechenie dlya raschetov i analiza[Autodesk. Software for engineering and analyzes]. Available at: (accessed 19.12.2013).
17.       Gromov D.S. Teplovoi rezhim dvukhstepennogo poplavkovogo giroskopa [Thermal mode of a two-range floating gyro]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2012, no. 3 (79), p. 119–123.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.