K. N. Volkov

Read the full article  ';
Article in Russian


The paper deals with conceptions and methods for visual representation of research numerical results in the problems of fluid mechanics and gas. The three-dimensional nature of unsteady flow being simulated creates significant difficulties for the visual representation of results. It complicates control and understanding of numerical data, and exchange and processing of obtained information about the flow field. Approaches to vortical flows visualization with the usage of gradients of primary and secondary scalar and vector fields are discussed. An overview of visualization techniques for vortical flows using different definitions of the vortex and its identification criteria is given. Visualization examples for some solutions of gas dynamics problems related to calculations of jets and cavity flows are presented. Ideas of the vortical structure of the free non-isothermal jet and the formation of coherent vortex structures in the mixing layer are developed. Analysis of formation patterns for spatial flows inside large-scale vortical structures within the enclosed space of the cubic lid-driven cavity is performed. The singular points of the vortex flow in a cubic lid-driven cavity are found based on the results of numerical simulation; their type and location are identified depending on the Reynolds number. Calculations are performed with fine meshes and modern approaches to the simulation of vortical flows (direct numerical simulation and large-eddy simulation). Paradigm of graphical programming and COVISE virtual environment are used for the visual representation of computational results. Application that implements the visualization of the problem is represented as a network which links are modules and each of them is designed to solve a case-specific problem. Interaction between modules is carried out by the input and output ports (data receipt and data transfer) giving the possibility to use various input and output devices.

Keywords: scientific visualization, computational fluid dynamics, vortex, turbulence, jet, cavity

 1.     Nakahashi K. Aeronautical CFD in the age of Petaflops-scale computing: From unstructured to Cartesian meshes. European Journal of Mechanics, B/Fluids,2013, vol. 40, pp. 75–86. doi: 10.1016/j.euromechflu.2013.02.005
2.     Bondarev A.E., Galaktionov V.A., Chechetkin V.M. Analysis of the development concepts and methods of visual data representation in computational physics. Computational Mathematics and Mathematical Physics, 2011, vol. 51, no. 4, pp. 624–636. doi: 10.1134/S096554251104004X
3.     Jiang M., Machiraju R., Thompson D. Detection and visualization of vortices. In: Visualization Handbook. Elsevier, 2005, pp. 295–309. doi: 10.1016/B978-012387582-2/50016-2
4.     Turk G., Banks D. Image-guided streamline placement. Proceedings of the ACM SIGGRAPH Conference on Computer Graphics. New Orleans, USA, 1996, pp. 453–460.
5.     Mebarki A., Alliez P., Devillers O. Farthest point seeding for efficient placement of streamlines. Proceedings of IEEE Visualization Conference, 2005, art. no. 1566043, p. 61. doi: 10.1109/VIS.2005.39
6.     Liu Z., Moorhead R.J., Groner J. An advanced evenly-spaced streamline placement algorithm. IEEE Transactions on Visualization and Computer Graphics, 2006, vol. 12, no. 5, pp. 965–972. doi: 10.1109/TVCG.2006.116
7.     Spencer B., Laramee R.S., Chen G., Zhang E. Evenly spaced streamlines for surfaces: An image-based approach. Computer Graphics Forum, 2009, vol. 28, no. 6, pp. 1618–1631. doi: 10.1111/j.1467-8659.2009.01352.x
8.     Hultquist J.P.M. Constructing stream surfaces in steady 3D vector fields. Proceedings of IEEE Visualization Conference. Boston, USA, 1992, pp. 171–178. doi: 10.1109/VISUAL.1992.235211
9.     Garth C., Tricoche X., Salzbrunn T., Bobach T., Scheuermann G. Surface techniques for vortex visualization. Proceedings of the 6th Joint IEEE TCVG-EUROGRAPHICS Symposium on Visualization, 2004, pp. 155–164.
10.  Garth C., Krishnan H., Tricoche X., Bobach T., Joy K.I. Generation of accurate integral surfaces in time-dependent vector fields. IEEE Transactions on Visualization and Computer Graphics, 2008, vol. 14, no. 6, pp. 1404–1411. doi: 10.1109/TVCG.2008.133
11.  Krishnan H., Garth C., Joy K.I. Time and streak surfaces for flow visualization in large time-varying data sets. IEEE Transactions on Visualization and Computer Graphics, 2009, vol. 15, no. 6, art. no. 5290738, pp. 1267–1274. doi: 10.1109/TVCG.2009.190
12.  Theisel H., Weinkauf T., Hege H.-C., Seidel H.-P. Topological methods for 2D time-dependent vector fields based on stream lines and path lines. IEEE Transactions on Visualization and Computer Graphics, 2005, vol. 11, no. 4, pp. 383–394. doi: 10.1109/TVCG.2005.68
13.  van Wijk J.J. Spot noise texture synthesis for data visualization. ACM Siggraph Computer Graphics, 1991, vol. 25, no. 4, pp. 309–318. doi: 10.1145/122718.122751
14.  Cabral B., Leedom L. Imaging vector fields using line integral convolution. Proceedings of the ACM SIGGRAPH Conference on Computer Graphics. Ahaneim, USA, 1993, pp. 263–270.
15.  Shen H.-W., Kao D.L. A new line integral convolution algorithm for visualizing time-varying flow fields. IEEE Transactions on Visualization and Computer Graphics, 1998, vol. 4, no. 2, pp. 98–108. doi: 10.1109/2945.694952
16.  Max N., Becker B. Flow visualization using moving textures. In: Data Visualization Techniques. John Wiley & Sons, 1999, pp. 99–105.
17.  Helgeland A., Andreassen O. Visualization of vector fields using seed LIC and volume rendering. IEEE Transactions on Visualization and Computer Graphics, 2004, vol. 10, no. 6, pp. 673–682. doi: 10.1109/TVCG.2004.49
18.  Haller G. An objective definition of a vortex. Journal of Fluid Mechanics, 2005, vol. 525, pp. 1–26. doi: 10.1017/S0022112004002526
19.  Lugt H.J. The dilemma of defining a vortex. In: Recent Developments in Theoretical and Experimental Fluid Mechanics. Berlin, Springer, 1979, pp. 309–321.
20.  Jeong J., Hussain F. On the identification of a vortex. Journal of Fluid Mechanics, 1995, vol. 285, pp. 69–94.
21.  Cucitore R., Quadrio M., Baron A. On the effectiveness and limitations of local criteria for the identification of a vortex. European Journal of Mechanics. B/Fluids, 1999, vol. 18, no. 2, pp. 261–282. doi: 10.1016/S0997-7546(99)80026-0
22.  Levy Y., Degani D., Seginer A. Graphical visualization of vortical flows by means of helicity. AIAA Journal, 1990, vol. 28, no. 8, pp. 1347–1352.
23.  Berdahl C.H., Thompson D.S. Eduction of swirling structure using the velocity gradient tensor. AIAA Journal, 1993, vol. 31, no. 1, pp. 97–103.
24.  Hunt J.C.R., Wray A., Moin P. Eddies, stream, and convergence zones in turbulent flows. Report CTR-S88. Center for Turbulence Research, Stanford (CA), USA, 1988, pp. 193-208.
25.  Chong M.S., Perry A.E., Cantwell B.J. A general classification of three-dimensional flow field. Physics of Fluids A, 1990, vol. 2, no. 5, pp. 765–777.
26.  Tabor M., Klapper I. Stretching and alignment in chaotic and turbulent flows. Chaos, Solitons and Fractals, 1994, vol. 4, no. 6, pp. 1031–1055.
27.  Banks D.C., Singer B.A. Predictor-corrector technique for visualizing unsteady flow. IEEE Transactions on Visualization and Computer Graphics, 1995, vol. 1, no. 2, pp. 151–163. doi: 10.1109/2945.468404
28.  Sujudi D., Haimes R. Identification of swirling flow in 3D vector fields. Proc. of 12th Computational Fluid Dynamics Conference, 1995, p. 792. doi: 10.2514/6.1995-1715
29.  Roth M., Peikert R. Higher-order method for finding vortex core lines. Proceedings of IEEE Visualization Conference. Research Triangle Park, NC, USA, 1998, pp. 143–150.
30.  Strawn R.C., Kenwright D.N., Ahmad J. Computer visualization of vortex wake systems. AIAA Journal, 1999, vol. 37, no. 4, pp. 511–512.
31.  Sadarjoen I.A., Post F.H., Ma B., Banks D.C., Pagendarm H.-G. Selective visualization of vortices in hydrodynamic flows. Proceedings of IEEE Visualization Conference. Research Triangle Park, NC, USA, 1998, pp. 419–422.
32.  Jiang M., Machiraju R., Thompson D.S. A novel approach to vortex core region detection. Joint Eurographics-IEEE TCVG Symposium on Visualization. Vienna, 2002, pp. 217–225.
33.  Volkov K.N. Topology of an incompressible viscous-fluid flow in a cubic cavity with a moving cover. Journal of Engineering Physics and Thermophysics, 2006, vol. 79, no. 2, pp. 295–300. doi: 10.1007/s10891-006-0100-7
34.  Upravlenie obtekaniem tel s vikhrevymi yacheikami v prilozhenii k letatel'nym apparatam integral'noi komponovki (chislennoe i fizicheskoe modelirovanie)[Control of object flow with vortex cells in the application to the aircrafts having integral layout (numerical and physical modeling)] / Eds. A.V. Ermishin, S.A. Isaev. Moscow, MoscowStateUniversityPubl., 2001, 360 p.
35.  Xu B.P., Wen J.X., Volkov K.N. Large-eddy simulation of vortical structures in a forced plane impinging jet. European Journal of Mechanics, B/Fluids, 2013, vol. 42, pp. 104–120. doi: 10.1016/j.euromechflu.2013.05.004

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.