Keywords: metamaterials, negative refractive index, NIM, Maxwell’s equations, recurrence relations, Green’s function
References
1. Dubinov A.E., Mytareva L.A. Invisible cloaking of material bodies using the wave flow method. Physics-Uspekhi, 2010, vol. 53, no. 5, pp. 475–479. doi: 10.3367/UFNe.0180.201005b.0475
2. Rozanov N.N. Nevidimost': za i protiv [Invisibility: pro and contra]. Priroda, 2008, no. 6, pp. 3–10.
3. Ozbay E., Li Z., Aydin K. Super-resolution imaging by one-dimensional microwave left-handed metamaterials with an effective negative index. Journal of Physics Condensed Matter, 2008, vol. 20, no. 30, art. no. 304216. doi: 10.1088/0953-8984/20/30/304216
4. Iyer A.K., Eleftheriades G.V. Free-space imaging beyond the diffraction limit using a Veselago-Pendry transmission-line metamaterial superlens. IEEE Transactions on Antennas and Propagation, 2009, vol. 57, no. 6, pp. 1720–1727. doi: 10.1109/TAP.2009.2019890
5. Casse B.D.F., Lu W.T., Huang Y.J., Gultepe E., Menon L., Sridhar S. Super-resolution imaging using a three-dimensional metamaterials nanolens. Applied Physics Letters, 2010, vol. 96, no. 2, art. no 023114. doi: 10.1063/1.3291677
6. Lequime M., Gralak B., Guenneau S., Zerrad M., Amra C. Optical properties of multilayer optics including negative index materials. Available at: http://arxiv.org/pdf/1312.6288v1.pdf (accessed 16.04.2014).
7. Burgos S.P., de Waele R., Polman A., Atwater H.A. A single-layer wide-angle negative-index metamaterial at visible frequencies. Nature Materials, 2010, vol. 9, no. 5, p. 407–412. doi: 10.1038/nmat2747
8. Gralak B., Tip A. Macroscopic Maxwell’s equations and negative index materials. Journal of Mathematical Physics, 2010, vol. 51, no. 5, art. no. 029004JMP. doi: 10.1063/1.3374670
9. Gralak B., Maystre D. Negative index materials and time-harmonic electromagnetic field. Comptes Rendus Physique, 2012, vol. 13, no. 8, pp. 786–799. doi: 10.1016/j.crhy.2012.04.003
10. Collin R.E. Frequency dispersion limits resolution in Veselago lens. Progress In Electromagnetics Research B, 2010, vol. 19, pp. 233–261.
11. Pravdin K.V., Popov I.Yu. Model of the interaction of point source electromagnetic fields with metamaterials. Nanosystems: Physics, Chemistry, Mathematics, 2013, vol. 4, no. 4, pp. 570–576.
12. Liu Y., Guenneau S., Gralak B. A route to all frequency homogenization of periodic structures. Available at: http://arxiv.org/pdf/1210.6171v2.pdf (accessed 16.04.2014).
13. Lequime M., Gralak B., Guenneau S., Zerrad M., Amra C. Negative Index Materials: The Key to «White» Multilayer Fabry-Perot. Available at: http://arxiv.org/pdf/1312.6281v1.pdf (accessed 16.04.2014).
14. Lai K.L., Tsang L., Huang C.C. Spatial domain green’s functions for planar multilayered structures microwave and optical technology letters. Microwave and optical technology letters, 2005, vol. 44, no. 1, pp. 86–91. doi: 10.1002/mop.20555
15. Maksimovic M., Hammer M., Jaksic Z. Thermal radiation antennas made of multilayer structures containing negative index metamaterials. Proceedings of SPIE - The International Society for Optical Engineering, 2008, vol. 6896, art. no. 689605. doi: 10.1117/12.762616