Меню
Публикации
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
Главный редактор

НИКИФОРОВ
Владимир Олегович
д.т.н., профессор
Партнеры
УДК 519.872
Алиев Т.И., Махаревс Э.
Читать статью полностью
ДИСЦИПЛИНЫ ОБСЛУЖИВАНИЯ НА ОСНОВЕ МАТРИЦЫ ПРИОРИТЕТОВ
Читать статью полностью

Язык статьи - Русский
Аннотация
Аннотация
Рассматриваются дисциплины обслуживания заявок общего вида в системах массового обслуживания с неоднородной нагрузкой. Для математического описания таких дисциплин предлагается использовать матрицу приоритетов, отображающую вид приоритета (относительный, абсолютный или его отсутствие) между двумя любыми классами заявок. Такой способ описания, обладая наглядностью и простотой задания приоритетов, позволяет получить математические зависимости характеристик функционирования системы от параметров. Сформулированы требования к формированию матрицы приоритетов, введено понятие канонической матрицы приоритетов. Показано, что не всякая матрица, построенная в соответствии с этими требованиями, является корректной. Понятие некорректности матрицы приоритетов проиллюстрировано на примере; показано, что такие матрицы не обеспечивают однозначности и определенности при разработке алгоритма, реализующего соответствующие им дисциплины обслуживания. Для канонических матриц приоритетов сформулированы правила построения корректных матриц. В качестве одной из основных характеристик рассматривается время пребывания в системе заявок разных классов, которое складывается из времени ожидания начала обслуживания и времени нахождения заявки на обработке. Для этих характеристик с использованием метода введения дополнительного события получены преобразования Лапласа, на основе которых выведены математические зависимости для расчета двух первых начальных моментов соответствующих характеристик обслуживания заявок.
Ключевые слова: система обслуживания, дисциплина обслуживания, смешанные приоритеты, матрица приоритетов, канонические матрицы приоритетов, корректные и некорректные матрицы приоритетов
Список литературы
Список литературы
1. Олифер В.Г., Олифер Н.А. Компьютерные сети. Принципы, технологии, протоколы: Учебник для вузов. 3-е изд. СПб.: Питер, 2006. 944 с.
2. Aliev T.I., Nikulsky I.Y., Pyattaev V.O. Modeling of packet switching network with relative prioritization for different traffic types // Proc. 10th International Conference on Advanced Communication Technology
(ICACT-2008). Phoenix Park, South Korea, 2008. Art. 4494220. P. 2174–2176.
3. Bogatyrev V.A. An interval signal method of dynamic interrupt handling with load balancing // Automatic Control and Computer Sciences. 2000. V. 34. N 6. P. 51–57.
4. Bogatyrev V.A. On interconnection control in redundancy of local network buses with limited availability // Engineering Simulation. 1999. V. 16. N 4. P. 463–469.
5. Вишневский В.М., Семенова О.В. Системы поллинга: теория и применение в широкополосных беспроводных сетях. М.: Техносфера, 2007. 312 с.
6. Муравьева-Витковская Л.А. Обеспечение качества обслуживания в мультисервисных компьютерных сетях за счет приоритетного управления // Изв. вузов. Приборостроение. 2012. Т. 55. № 10. С. 64–68.
7. Алиев Т.И. Проектирование систем с приоритетами // Изв. вузов. Приборостроение. 2014. Т. 57. № 4. С. 30–35.
8. Алиев Т.И., Муравьева Л.А. Система с динамически изменяющимися смешанными приоритетами и ненадежным прибором // Автоматика и телемеханика. 1988. Т. 49. № 7. С. 99–106.
9. Alfa A.S. Matrix-geometric solution of discrete time MAP/PH/1 priority queue // Naval Research Logistics. 1998. V. 45. N 1. P. 23–50.
10. Основы теории вычислительных систем / Под ред. С.А. Майорова. М.: Высшая школа, 1978. 408 с.
11. Гольдштейн Б.С. Об оптимальном приоритетном обслуживании в программном обеспечении ЭАТС. В кн. Системы управления сетями. М.: Наука, 1980. С. 73–78.
12. Zhao J.-A., Li B., Cao X.-R., Ahmad I. A matrix-analytic solution for the DBMAP/PH/1 priority queue // Queueing Systems. 2006. V. 53. N 3. P. 127–145.
13. Климов Г.П. Стохастические системы обслуживания. М.: Наука, 1966. 242 с.
14. Алиев Т.И. Аппроксимация вероятностных распределений в моделях массового обслуживания // Научно-технический вестник информационных технологий, механики и оптики. 2013. № 2 (84). С. 88–93.
15. Клейнрок Л. Вычислительные системы с очередями: Пер. с англ. М.: Мир, 1979. 600 с.