
НИКИФОРОВ
Владимир Олегович
д.т.н., профессор
doi: 10.17586/2226-1494-2015-15-2-322-328
УДК 519.85
МЕТОДЫ РЕШЕНИЯ ЗАДАЧИ ЛИНЕЙНОГО ПРОГРАММИРОВАНИЯ С ДОПОЛНИТЕЛЬНЫМИ ОГРАНИЧЕНИЯМИ НА ПЕРЕМЕННЫЕ ОПРЕДЕЛЕННОГО ТИПА
Читать статью полностью

Ссылка для цитирования: Урбан А.Р. Методы решения задачи линейного программирования с дополнительными ограничениями на переменные определенного типа // Научно-технический вестник информационных технологий, механики и оптики. 2015. Том 15. № 2. С. 322–328.
Аннотация
Представлено описание решения задачи, связанной с учетом специфических допустимых множеств на переменные в задачах линейного программирования. В работе речь идет о допустимом множестве, представляющем собой для некоторой переменной объединение отрезков с множительным параметром. Решение указанной задачи производится в два этапа: сначала решается релаксированная задача линейной оптимизации (без учета дополнительных ограничений на переменные), а затем на основании полученного решения строится вспомогательная задача нелинейной оптимизации. Решение указанной вспомогательной задачи основывается на специализированном методе нелинейной оптимизации – методе Бокса. Результатом является предложенный автором алгоритм для решения задачи линейного программирования с дополнительными ограничениями на переменные с указанием оценок точности. Решение указанной задачи имеет высокую практическую значимость. Такого рода ограничения на переменные в задачах линейного программирования возникают достаточно часто для производственных задач. Применение метода показано на примере задачи нахождения оптимального плана раскроев в бумагоделательной промышленности, при решении которой возникает задача округления количества накатов съема тамбура бумагоделательных машин в условиях найденного оптимального плана раскроев.
Список литературы