Меню
Публикации
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
Главный редактор
НИКИФОРОВ
Владимир Олегович
д.т.н., профессор
Партнеры
doi: 10.17586/2226-1494-2015-15-3-398-404
УДК 535:631.373.826
ВЫСОКОТОЧНОЕ ОПРЕДЕЛЕНИЕ УГЛОВОГО ПОЛОЖЕНИЯ ТОЧЕЧНОГО ИСТОЧНИКА ИЗЛУЧЕНИЯ С ПЗС-ЛИНЕЙКАМИ
Читать статью полностью
Язык статьи - русский
Ссылка для цитирования: Лебедько Е.Г., Зверева Е.Н., Нгуен Ву Тунг. Высокоточное определение углового положения точечного источника излучения с ПЗС-линейками // Научно-технический вестник информационных технологий, механики и оптики. 2015. Т. 15. № 3. С. 398–404.
Аннотация
Ссылка для цитирования: Лебедько Е.Г., Зверева Е.Н., Нгуен Ву Тунг. Высокоточное определение углового положения точечного источника излучения с ПЗС-линейками // Научно-технический вестник информационных технологий, механики и оптики. 2015. Т. 15. № 3. С. 398–404.
Аннотация
Предмет исследования. Предложен метод измерения углового положения точечного источника в системе с ПЗС-линейками посредством преобразования «угол – время – код» в условиях малой освещенности и при повышенных соотношениях сигнал/шум. Проведена оценка потенциальной точности метода, которая определяется неустранимыми аппаратурными случайными погрешностями измерения в условиях оптимальной обработки поступающей информации при однократном считывании ее с ПЗС-линеек. Метод. Предлагается схема оптико-электронной системы измерения углового положения с ПЗС-линейками с вытянутыми чувствительными элементами и опорной точкой отсчета. При этом на линейки проецируются изображения как опорного точечного источника, так и измеряемого точечного источника, угловое положение которого следует определять с высокой точностью. С выхода ПЗС-линейки сигналы поступают на линейный оптимальный (или близкий к нему) фильтр, а с него – на схему фиксации положения максимума сигнала. Схема обеспечивает минимальную погрешность, обусловленную влиянием шумов. Фронты импульсов, соответствующие максимумам сигналов, формируют временной интервал, который заполняется счетными импульсами высокой частоты. Число импульсов в этом интервале будет соответствовать измеряемому угловому положению точечного источника. Основные результаты. Проведен анализ случайных погрешностей с позиции теории статистических решений. Анализ учитывает спектральную функцию сигналов, определяемую передаточными функциями оптической системы и ПЗС-линейки как анализатора изображения. Проведено исследование точности измерения в зависимости от тактовой частоты считывания информации с ПЗС-линеек при различных значениях отношения сигнала к шуму. Показано, что даже при однократном считывании ПЗС-линейки по предлагаемой оптико-электронной схеме погрешность измерения не превышает 0,01 размера чувствительного элемента. Практическая значимость. Результаты работы могут найти применение в высокоточных измерительных оптико-электронных системах звездных датчиков для определения углового положения маломощных точечных источников излучения.
Ключевые слова: угловое положение точечного источника, потенциальная точность определения углового положения точечного источника, спектральная функция сигнала на выходе приемника.
Список литературы
Список литературы
1. Konyakhin I.A., Turgalieva T.V. Three-coordinate digital autocollimator // Journal of Optical Technology (A Translation of Opticheskii Zhurnal). 2013. V. 80. N 12. P. 772–777. doi: 10.1364/JOT.80.000772
2. Konyakhin I.A., Kopylova T.V., Konyakhin A.I. Optic-electronic autocollimation sensor for measurement of the three-axis angular deformation of industry objects // Proceedings of SPIE – The International Society for Optical Engineering. 2012. V. 8439. Art. 84391N. doi: 10.1117/12.922096.
3. Kleshchenok M.A., Anisimov A.G., Lashmanov O.U., Timofeev A.N., Korotaev V.V. Alignment control optical-electronic system with duplex retroreflectors // Proceedings of SPIE – The International Society for Optical Engineering. 2014. V. 9131. Art. 91311X. doi: 10.1117/12.2052290
4. Konyakhin I., Timofeev A., Usik A., Zhukov D. The experimental research of the systems for measuring the angle rotations and line shifts of the large aperture radio-telescope components // Proceedings of SPIE – The International Society for Optical Engineering. 2010. V. 7544. Art. 75443P. doi: 10.1117/12.885604
5. Konyakhin I.A., Timofeev A.N., Konyakhin A.I. Three-axis optic-electronic autocollimation system for the inspection of large-scale objects // Proceedings of SPIE – The International Society for Optical Engineering. 2013. V. 8788. Art. 87882C. doi: 10.1117/12.2020343
6. Konyakhin I.A., Timofeev A.N., Yaryshev S.N. High precision angular and linear measurements using universal opto-electronic measuring modules in distributed measuring systems // Key Engineering Materials. 2010. V. 437. P. 160–164. doi: 10.4028/www.scientific.net/KEM.437.160
7. Konyakhin I.A., Kopylova T.V., Konyakhin A.I., Smekhov A.A. Optic-electronic systems for measurement the three-dimension angular deformation of axles at the millimeter wave range radiotelescope // Proceedings
of SPIE – The International Society for Optical Engineering. 2013. V. 8759. Art. 87593E. doi: 10.1117/12.2014605
8. Turgalieva T.V., Konyakhin I. A. Research of autocollimating angular deformation measurement system for large-size objects control // Proceedings of SPIE – The International Society for Optical Engineering. 2013. V. 8788. Art. 878832. doi: 10.1117/12.2020861
9. Konyakhin I.A., Timofeev A.N., Usik A.A., Zhukov D.V. Optic-electronic systems for measuring the angle deformations and line shifts of the reflecting elements at the rotateable radio-telescope // Proceedings of SPIE – The International Society for Optical Engineering. 2011. V. 8082. Art. 80823R. doi: 10.1117/12.890059
10. Pantyushin A., Korotaev V. Control measurement system for railway track position // Proceedings of SPIE – The International Society for Optical Engineering. 2012. V. 8486. Art. 84861B. doi: 10.1117/12.930503
11. Anisimov A.G., Pantyushin A.V., Lashmanov O.U., Vasilev A.S., Timofeev A.N., Korotaev V.V., Gordeev S.V. Absolute scale-based imaging position encoder with submicron accuracy // Proceedings of SPIE – The International Society for Optical Engineering. 2013. V. 8788. Art. 87882T. doi: 10.1117/12.2021022
12. Лебедько Е.Г. Системы импульсной оптической локации. СПб.: Лань, 2014. 368 с.
13. Maraev A.A., Timofeev A.N. Energetic sensitivity of optical-electronic systems based on polychromatic optical equisignal zone // Proceedings of SPIE – The International Society for Optical Engineering. 2013. V.
8788. Art. 878836. doi: 10.1117/12.2020757
14. Лебедько Е.Г. Теоретические основы передачи информации. СПб.: Лань, 2011. 352 с.
15. Левшин В.Л. Обработка информации в оптических системах пеленгации. М.: Машиностроение, 1978. 168 с.