DOI: 10.17586/2226-1494-2017-17-1-39-45


УДК544.723.54, 544.725.2

КИНЕТИКА КОЛЛАПСА КОМПОЗИТОВ НА ОСНОВЕ СОПОЛИМЕРА АКРИЛОВОЙ КИСЛОТЫ И АКРИЛАМИДА, НАПОЛНЕННОГО БЕНТОНИТОМ В ВОДНЫХ РАСТВОРАХ ПОЛИВАЛЕНТНЫХ МЕТАЛЛОВ

Ситникова В.Е., Илич И., Гусев К.Г., Олехнович Р.О., Успенская М.В.


Читать статью полностью 
Язык статьи - русский

Ссылка для цитирования: Ситникова В.Е., Илич И., Гусев К.Г., Олехнович Р.О., Успенская М.В. Кинетика коллапса композитов на основе сополимера акриловой кислоты и акриламида, наполненного бентонитом в водных растворах поливалентных металлов // Научно-технический вестник информационных технологий, механики и оптики. 2017. Т. 17. № 1. С. 39–45. doi: 10.17586/2226-1494-2017-17-1-39-45

Аннотация

Синтезированы полимерные полиэлектролитные гидрогелевые композиты на основе сополимера акриловой кислоты и акриламида, наполненные бентонитом с массовой долей от 1 до 5 мас.%. В работе исследована кинетика коллапса гидрогелевых композитов в водных растворах солей поливалентных металлов различной концентрации при постоянной температуре 25 ºС. Масса отданной гидрогелями воды в раствор в результате коллапса материала определялась гравиметрическим методом. Было обнаружено, что присутствие бентонита препятствует коллапсу композитов на основе полиэлектролитных гидрогелей в водных растворах электролитов вследствие стерических и электростатических взаимодействий между частицами наполнителя. Было показано, что наиболее точно описывает полученные экспериментальные данные коллапса полимерного гидрогелевого композита в водных растворах поливалентных металлов кинетическая модель Пелега. Продемонстрировано, что как начальная скорость коллапса, так и кинетические константы коллапса и набухания немонотонно зависят от концентрации (ионной силы) электролита в водном растворе. Представлено, что при одинаковой концентрации солей в растворе кинетическая константа коллапса гидрогеля не зависит от радиуса ионов металлов исследуемых солей.


Ключевые слова: коллапс, полиэлектролитные гели, бентонит, полимерные композиты, ионная сила, ионный радиуса

Список литературы
1.     Chiu H.-C., Lin Y.-F., Hsu Y.-H. Effects of acrylic acid on preparation and swelling properties of pH-sensitive dextran hydrogels // Biomaterials. 2002. V. 23. N 4. P. 1103–1112. doi: 10.1016/S0142-9612(01)00222-8
2.     Eichenbaum G.M., Kiser P.F., Simon S.A., Needham D. pH and ion- triggered volume response of anionic hydrogel microspheres // Macromolecules. 1998. V. 31. P. 5084–5093. doi: 10.1021/ma970897t
3.     De S.K., Aluru N.R., Johnson B., Crone W.C., Beebe D.J., Moore J. Equilibrium swelling and kinetics of pH-responsive hydrogels: models, experiments, and simulations // Journal of Microelectromechanical Systems. 2002. V. 11. N 5. P. 544–555. doi:10.1109/JMEMS.2002.803281
4.     Alvarez-Lorenzo C., Concheiro A. Reversible adsorption by a pH- and temperature-sensitive acrylic hydrogel // Journal of Controlled Release. 2002. V. 80. N1–3. P. 247–257. doi: 10.1016/S0168-3659(02)00032-9
5.     Qiu Y., Park K. Environment-sensitive hydrogels for drug delivery // Advanced Drug Delivery Reviews. 2001. V. 53. N 3. P. 321–339. doi: 10.1016/S0169-409X(01)00203-4
6.     Kikuchi A., Okano T. Pulsatile drug release control using hydrogels // Advanced Drug Delivery Reviews. 2002. V. 54. N 1. P. 53–77. doi: 10.1016/S0169-409X(01)00243-5
7.     Giang Phan V.H., Thambi T., Duong H.T.T., Lee D.S. Poly(amino carbonate urethane)-based biodegradable, temperature and pH-sensitive injectable hydrogels for sustained human growth hormone delivery // Scientific Reports. 2016. V. 6. Art. 29978. doi: 10.1038/srep29978
8.     Qiu Y., Park K. Environment-sensitive hydrogels for drug delivery // Advanced Drug Delivery Reviews. 2012. V. 64. P. 49–60. doi: 10.1016/j.addr.2012.09.024
9.     Мочалова А.Е., Будруев А.В., Олейник А.В., Смирнова Л.А. Термо- и рН-чувствительные гидрогели на основе хитозана, полученные с использованием диазида терефталевой кислоты // Перспективные материалы. 2009. №5. С. 61–65.
10.  Ельяшевич Г.К. Смирнов М.А. Новые рН-чувствительные и электроактивные композиционные системы, содержащие гидрогели и проводящие полимеры на пористой матрице // Высокомолекулярные соединения. Серия А. 2012. Т. 54. № 11. С. 1675–1684.
11.  Soleimani F., Sadeghi M. Synthesis of pH-sensitive hydrogel based on starch-polyacrylate superabsorbent // Journal of Biomaterials and Nanobiotechnology. 2012. V. 3. P. 310–314. doi: 10.4236/jbnb.2012.322038
12.  Peleg M. An empirical model for the description of moisture sorption curves // Journal of Food Science. 1988. V. 53. N 4. P. 1216– 1217.doi: 10.1111/j.1365-2621.1988.tb13565.x
13.  Skouri R., Schosseler F., Munch J.P., Candau S.J. Swelling and elastic properties of polyelectrolyte gels // Macromolecules. 1995. V. 28. P. 197–210. doi: 10.1021/ma00105a026
14.  Horkay F., Tasaki I., Basser P.J. Osmotic swelling of polyacrylate hydrogels in physiological salt solutions // Biomacromolecules. 2000. V. 1. N 1. P. 84–90. doi:10.1021/bm9905031
15.  Churochkina N.A., Starodoubtsev S.G., Khokhlov A.R. Swelling and collapse of the gel composites based on neutral and slightly charged poly(acrylamide) gels containing Na-montmorillonite // Polymer Gels and Networks. 1998. V. 6. P. 205215. doi:10.1016/S0966-7822(97)00014-2
16.  Равдель A.A., Пономарева А.М. Краткий справочник физико-химических величин. СПб.: Специальная Литература, 1998. 232 c.


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Информация 2001-2019 ©
Научно-технический вестник информационных технологий, механики и оптики.
Все права защищены.

Яндекс.Метрика