doi: 10.17586/2226-1494-2017-17-1-39-45


COLLAPSE KINETIC OF COMPOSITES BASED ON COPOLYMERS OF ACRYLIC ACID AND ACRYLAMIDE FILLED WITH BENTONITE IN AQUEOUS SOLUTIONS OF POLYVALENT METALS

V. E. Sitnikova, I. Ilic, K. G. Gusev, R. O. Olekhnovich, M. V. Uspenskaya


Read the full article  ';
Article in Russian

For citation: Sitnikova V.E., Ilic I., Gusev K.G., Olekhnovich R.O., Uspenskaya M.V. Collapse kinetic of composites based on copolymers of acrylic acid and acrylamide filled with bentonite in aqueous solutions of polyvalent metals. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2017, vol. 17, no. 1, pp. 39–45. doi: 10.17586/2226-1494-2017-17-1-39-45

Abstract

Polymer polyelectrolyte hydrogel composites of acrylic acid and acrylamide copolymer filled with different amounts of bentonite (from 1 to 5 wt.%) were synthesized. Collapse kinetics of hydrogel composites was studied in solutions of different concentrations of polyvalent metal salts at a constant temperature of 25 °C. The mass of water given away from hydrogels into the solution was determined by gravimetric method. It has been found that the presence of bentonite in the polyelectrolyte hydrogel composites prevents to some extent collapse in electrolyte solutions, due to steric and electrostatic interactions between the filler particles. These interactions preclude further collapse of hydrogels. The Peleg's kinetic model, most precisely describing experimental data, was applied to calculation of kinetic constants of polymer hydrogels collapse. It is shown that the initial collapse rate and the kinetic constant of collapse and swelling depend non-monotonically on the concentration (ionic strength) in the electrolyte solution. At the identical concentration of salts in the solution the kinetic constant of hydrogel collapse is independent of the radius of ions of metals of the studied salts.


Keywords: hydrogel collapse, polymer polyelectrolyte gel, polymer composites, ionic strength, ionic radius

References
1.     Chiu H.-C., Lin Y.-F., Hsu Y.-H. Effects of acrylic acid on preparation and swelling properties of pH-sensitive dextran hydrogels. Biomaterials, 2002, vol. 23, no. 4, pp. 1103–1112. doi: 10.1016/S0142-9612(01)00222-8
2.     Eichenbaum G.M., Kiser P.F., Simon S.A., Needham D. pH and ion- triggered volume response of anionic hydrogel microspheres. Macromolecules, 1998, vol. 31, pp. 5084–5093. doi: 10.1021/ma970897t
3.     De S.K., Aluru N.R., Johnson B., Crone W.C., Beebe D.J., Moore J. Equilibrium swelling and kinetics of pH-responsive hydrogels: models, experiments, and simulations. Journal of Microelectromechanical Systems, 2002, vol. 11, no. 5, pp. 544–555. doi:10.1109/JMEMS.2002.803281
4.     Alvarez-Lorenzo C., Concheiro A. Reversible adsorption by a pH- and temperature-sensitive acrylic hydrogel. Journal of Controlled Release, 2002, vol. 80, no.1–3, pp. 247–257. doi: 10.1016/S0168-3659(02)00032-9
5.     Qiu Y., Park K. Environment-sensitive hydrogels for drug delivery. Advances Drug Delivery Reviews, 2001, vol. 53, no. 3, pp. 321–339. doi: 10.1016/S0169-409X(01)00203-4
6.     Kikuchi A., Okano T. Pulsatile drug release control using hydrogels. Advances Drug Delivery Reviews, 2002, vol. 54, no. 1, pp. 53–77. doi: 10.1016/S0169-409X(01)00243-5
7.     Giang Phan V.H., Thambi T., Duong H.T.T., Lee D.S. Poly(amino carbonate urethane)-based biodegradable, temperature and pH-sensitive injectable hydrogels for sustained human growth hormone delivery. Scientific Reports, 2016, vol. 6, art. 29978. doi: 10.1038/srep29978
8.     Qiu Y., Park K. Environment-sensitive hydrogels for drug delivery. Advanced Drug Delivery Reviews, 2012, vol.64, pp.49–60.doi: 10.1016/j.addr.2012.09.024
9.     Mochalova A.E., Budruev A.V., Oleinik A.V., Smirnova L.A. Thermo and pH-sensitive hydrogels on chitozan base, obtained with use of diazide of terephthalic acid. Perspektivnye Materialy, 2009, no. 5, pp. 61–65.(in Russian).
10.  Elyashevich G.K., Smirnov M.A. New pH-responsive and electroactive composite systems containing hydrogels and conducting polymers on a porous matrix. Polymer Science. Series A, 2012, vol. 54, no. 11, pp. 900–908. doi: 10.1134/S0965545X12110028
11.  Soleimani F., Sadeghi M. Synthesis of pH-sensitive hydrogel based on starch-polyacrylate superabsorbent. Journal of Biomaterials and Nanobiotechnology, 2012, vol. 3, pp. 310–314. doi: 10.4236/jbnb.2012.322038
12.  Peleg M. An empirical model for the description of moisture sorption curves. Journal of Food Science, 1988, vol. 53, no. 4, pp. 1216– 1217. doi: 10.1111/j.1365-2621.1988.tb13565.x
13.  Skouri R., Schosseler F., Munch J.P., Candau S.J. Swelling and elastic properties of polyelectrolyte gels. Macromolecules, 1995, vol. 28, pp. 197–210. doi: 10.1021/ma00105a026
14.  Horkay F., Tasaki I., Basser P.J. Osmotic swelling of polyacrylate hydrogels in physiological salt solutions. Biomacromolecules, 2000, vol. 1, no. 1, pp. 84–90. doi:10.1021/bm9905031
15.  Churochkina N.A., Starodoubtsev S.G., Khokhlov A.R. Swelling and collapse of the gel composites based on neutral and slightly charged poly(acrylamide) gels containing Na-montmorillonite. Polymer Gels and Networks, 1998, vol. 6, pp. 205215. doi:10.1016/S0966-7822(97)00014-2
16.  Ravdel' A.A., Ponomareva A.M. Short Guide of Physical and Chemical Values. St. Petersburg, Spetsial'naya Literatura Publ., 1998, 232 p.(in Russian).


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика