Язык статьи - русский
Ссылка для цитирования: Бажаев Н.А., Лебедев И.С., Кривцова И.Е. Анализ статистических данных мониторинга сетевой инфраструктуры для выявления аномального поведения локального сегмента системы // Научно-технический вестник информационных технологий, механики и оптики. 2017. Т. 17. № 1. С. 92–99. doi: 10.17586/2226-1494-2017-92-99
Аннотация
Предложен метод мониторинга состояния информационной безопасности сегментов сетей маломощных устройств, персональных сетей «мягких пространств» («Умный дом», «Интернет вещей»). Проведен анализ характеристик систем, базирующихся на беспроводных технологиях, получаемых в результате пассивного наблюдения и активного опроса устройств, которые составляют инфраструктуру сети. Рассмотрен ряд внешних признаков попыток несанкционированного доступа к беспроводной сети со стороны потенциального нарушителя информационной безопасности. Модель для анализа состояний информационной безопасности основана на идентификационных, количественных, частотных, временных характеристиках. Ввиду особенностей устройств, обеспечивающих инфраструктуру сети, оценивание состояния информационной безопасности направлено на анализ нормального функционирования системы, а не на поиск сигнатур и характеристик аномалий при проведении различного рода информационных атак. Раскрыт эксперимент, обеспечивающий получение статистической информации о работе удаленных устройств беспроводной сети, где накопление данных для принятия решения происходит путем сравнения статистической информации служебных сообщений оконечных узлов в пассивном и активном режимах. Представлены результаты эксперимента по информационному воздействию на типовую систему. Предложенный подход к анализу статистических данных сетевой инфраструктуры на основе наивного байесовского классификатора может быть использован для определения состояний информационной безопасности.
Ключевые слова: информационная безопасность, беспроводные сети «мягких пространств», персональные сети, модель информационной безопасности
Список литературы
1. Kumar P., Ylianttila M., Gurtov A., Lee S.-G., Lee H.-J. An efficient and adaptive mutual authentication framework for heterogeneous wireless sensor networks-based applications // Sensors. 2014. V. 14. N 2. P. 2732–2755. doi:
10.3390/s140202732
2. Sridhar P., Sheikh-Bahaei S., Xia S., Jamshidi M. Multi agent simulation using discrete event and soft-computing methodologies // Proc. IEEE Int. Conf. on Systems, Man and Cybernetics. Washington, 2003. V. 2. P. 1711–1716.
3. Page J., Zaslavsky A., Indrawan M. Countering security vulnerabilities using a shared security buddy model schema in mobile agent communities // Proc. 1st Int. Workshop on Safety and Security in Multi-Agent Systems (SASEMAS). 2004. P. 85–101.
4. Зикратов И.А., Зикратова Т.В., Лебедев И.С. Доверительная модель управления безопасностью мультиагентных робототехнических систем с децентрализованным управлением // Научно-технический вестник информационных технологий, механики и оптики. 2014. № 2 (90). С. 47–52.
5. Zikratov I.A., Lebedev I.S., Gurtov A.V. Trust and reputation mechanisms for multi-agent robotic systems // Lecture Notes in Computer Science. 2014. V. 8638. P. 106–120. doi:
10.1007/978-3-319-10353-2_10
6. Wyglinski A.M., Huang X., Padir T., Lai L., Eisenbarth T.R., Venkatasubramanian K. Security of autonomous systems employing embedded computing and sensors // IEEE Micro. 2013. V. 33. P. 80–86. doi:
10.1109/MM.2013.18
7. Lebedev I.S., Korzhuk V.M. The monitoring of information security of remote devices of wireless networks // Lecture Notes in Computer Science. 2015. V. 9247. P. 3–10. doi:
10.1007/978-3-319-23126-6_1
8. Prabhakar M., Singh J.N., Mahadevan
G. Nash equilibrium and Marcov chains to enhance game theoretic approach for vanet security // Advances in Intelligent Systems and Computing. 2013. V. 174 AISC. P. 191–199. doi:
10.1007/978-81-322-0740-5_24
9. Bazhayev N., Lebedev I., Korzhuk V., Zikratov I. Monitoring of the information security of wireless remote devices // Proc. 9
th Int. Conf. on Application of Information and Communication Technologies. Rostov-on-Don, Russian Federation, 2015. P. 233–236. doi:
10.1109/ICAICT.2015.7338553
10. Nikolaevskiy I., Lukyanenko A., Polishchuk T., Polishchuk V.M., Gurtov A.V. isBF: scalable in-packet bloom filter based multicast // Computer Communications. 2015. V. 70. P. 79–85. doi:
10.1016/j.comcom.2015.05.002
11. Al-Naggar Y., Koucheryavy A. Fuzzy logic and Voronoi diagram using for cluster head selection in ubiquitous sensor networks // Lecture Notes in Computer Science. 2014. V. 8638. P. 319–330. doi:
10.1007/978-3-319-10353-2_28
12. Chehri A., Moutah H.T. Survivable and scalable wireless solution for e-health and emergency applications // Proc. 1st Int. Workshop on Engineering Interactive Computing Systems for Medicine and Health Care. Pisa, Italy, 2011. P. 25–29.
13. Krivtsova I., Lebedev I., Sukhoparov M., Bazhayev N., Zikratov I., Ometov A., Andreev S., Masek P., Fujdiak R., Hosek J. Implementing a broadcast storm attack on a mission-critical wireless sensor network // Lecture Notes in Computer Science. 2016. V. 9674. P.297–308.
14. Бажаев Н.А., Кривцова И.Е., Лебедев И.С. Исследование доступности удаленных устройств беспроводных сетей // Научно-технический вестник информационных технологий, механики и оптики. 2016. Т. 16. № 3. С. 467–473. doi:
10.17586/2226-1494-2016-16-3-467-473
15. Исакеев Д.Г., Зикратова Т.В., Лебедев И.С., Шабанов Д.П. Оценка безопасного состояния мультиагентной робототехнической системы при информационном воздействии на отдельный элемент // Вестник компьютерных и информационных технологий. 2015. № 1 (127). С. 43–49.