Меню
Публикации
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
Главный редактор
НИКИФОРОВ
Владимир Олегович
д.т.н., профессор
Партнеры
doi: 10.17586/2226-1494-2017-17-6-1084-1091
УДК 004.94, 004.057
ТЕХНОЛОГИЯ АВТОМАТИЗИРОВАННОГО ИМИТАЦИОННОГО МОДЕЛИРОВАНИЯ МНОГОШАГОВЫХ БЕСПРОВОДНЫХ СЕТЕЙ В ГЕТЕРОГЕННОЙ МОДЕЛЬНОЙ СРЕДЕ
Читать статью полностью
Язык статьи - русский
Ссылка для цитирования: Павлов А.А., Датьев И.О., Шишаев М.Г. Технология автоматизированного имитационного моделирования многошаговых беспроводных сетей в гетерогенной модельной среде // Научно-технический вестник информационных технологий, меха-ники и оптики. 2017. Т. 17. № 6. С. 1084–1091. doi: 10.17586/2226-1494-2017-17-6-1084-1091
Аннотация
Ссылка для цитирования: Павлов А.А., Датьев И.О., Шишаев М.Г. Технология автоматизированного имитационного моделирования многошаговых беспроводных сетей в гетерогенной модельной среде // Научно-технический вестник информационных технологий, меха-ники и оптики. 2017. Т. 17. № 6. С. 1084–1091. doi: 10.17586/2226-1494-2017-17-6-1084-1091
Аннотация
Предмет исследования. Имитационное моделирование является основным способом тестирования решений, предлагаемых в области многошаговых беспроводных сетей. Создание имитационной модели многошаговой беспроводной сети – трудоемкая задача, связанная с применением специализированных программных средств, называемых сетевыми симуляторами. В данной работе рассмотрен современный опыт моделирования многошаговых беспроводных сетей и сформулированы основные проблемы. Одной из главных проблем является невозможность сравнительного анализа результатов имитационных экспериментов, проведенных различными исследователями. Это обусловлено причинами, связанными с применяемыми для тестирования моделями, планированием имитационных экспериментов и принципиальными различиями используемых сетевых симуляторов (гетерогенностью модельной среды). Метод. Предложена технология, позволяющая в автоматизированном режиме проводить имитационные эксперименты с моделями различных многошаговых беспроводных сетей и с использованием различных сетевых симуляторов.Основныерезультаты. В рамках технологии разработаныобобщенная концептуальная модель многошаговых беспроводных сетей и специализированный программный комплекс, автоматизирующий проведение серий экспериментов в гетерогенной модельной среде.Практическаязначимость. Программный комплекс позволяет использовать результаты других исследователей посредством воссоздания имитационных экспериментов, максимально приближенных к проведенным этими исследователями. Эффективность применения программного комплекса подтверждается существенным снижением временных затрат и результатами проведенных экспериментов.
Ключевые слова: многошаговые беспроводные сети, имитационное моделирование, сетевые симуляторы
Благодарности. Работа выполнена в рамках программы фундаментальных исследований ОНИТ РАН «Интеллектуальные информационные технологии, системный анализ и автоматизация» по проекту «Развитие технологий информационных систем для информационно-аналитической поддержки задач развития хозяйственной деятельности в Арктических зоне РФ».
Список литературы
Благодарности. Работа выполнена в рамках программы фундаментальных исследований ОНИТ РАН «Интеллектуальные информационные технологии, системный анализ и автоматизация» по проекту «Развитие технологий информационных систем для информационно-аналитической поддержки задач развития хозяйственной деятельности в Арктических зоне РФ».
Список литературы
1. Хоров Е.М. Знакомство с современными беспроводными технологиями. Многошаговые беспроводные сети: принципы построения и открытые задачи [Электронный ресурс]. Режим доступа: http://iitp.ru/upload/publications/6409/paper.pdf. (Дата обращения: 05.07.2017).
2. Datey S.G., Ansari T. Mobile Ad-hoc networks its advantages and challenges // International Journal of Electrical and Electronics Research. 2015. V. 3. N 2. P. 491–496.
3. Sahnoun A., Habbani A., El Abbadi J. EEPR-OLSR: an energy efficient and path reliability protocol for proactive mobile Ad-hoc network routing // International Journal of Communication Networks and Information Security. 2017. V. 9. N 1. P. 22–29.
4. Touil H., Fakhri Y. A fuzzy-based QoS maximization protocol for WiFi multimedia (IEEE 802.11e) ad hoc networks // International Journal of Communication Networks and Information Security. 2014. V. 6. N 3. P. 217–225.
5. Gunantara N., Dharma A. Optimal path pair routes through multi-criteria weights in ad hoc network using genetic algorithm // International Journal of Communication Networks and Information Security. 2017. V. 9. N 1. P. 88–94.
6. Nekrasov P., Fakhriev D. Transmission of real-time traffic in TDMA multi-hop wireless ad-hoc networks // Proc. IEEE International Conference on Communications (ICC). London, 2015. P. 6469–6474. doi: 10.1109/ICC.2015.7249355
7. Махмуд А.Ш., Поляков В.М. Оценка производительности протоколов маршрутизации мобильных ad-hoc сетей (manet) // Научный результат. Информационные технологии. 2016. № 4. C. 64–71. doi: 10.18413/2518-1092-2016-1-4-64-71
8. Purohit R., Keswani B. Design and validation of new routing protocol in MANET for optimal performance // International Journal of Computer Science and Network Security. 2017. V. 17. N 2. P. 156–160.
9. RFC 3561. Ad hoc On-Demand Distance Vector (AODV) Routing [Электронныйресурс]. Режим доступа: https://tools.ietf.org/html/rfc3561 (Дата обращения: 05.07.2017).
10. Kaur Y., Kaur M. An efficient EPAR routing protocol in MANET based upon AACO // International Journal of Advanced Research in Computer Science and Software Engineering. 2016. V. 6. N 8. P. 254–262.
11. Tiwari S., Singh P. An energy saving multipath AODV routing protocol in MANET // International Journal of Engineering and Computer Science. 2016. V. 5. N 11. P. 19088–19091. doi: 10.18535/ijecs/v5i11.66
12. Sharma R. A secure and proficient routing protocol in mobile Ad-hoc networks using genetic mechanism // International Journal of Innovative Research in Computer and Communication Engineering. 2016. V. 4. N 6. P. 10844–10851. doi: 10.15680/IJIRCCE.2016.0406093
13. Lakshman Naik L., Khan R.U., Mishra R.B. Analysis of node velocity effects in MANET routing protocols using network simulator (NS3) // International Journal of Computer Applications. 2016. V. 144. N 4. P. 145–150. doi: 10.5120/ijca2016910225
14. Павлов А.А., Датьев И.О., Шишаев М.Г. Разработка имитационных моделей для тестирования протоколов маршрутизации беспроводных многошаговых сетей // Вестник Иркутского государственного технического университета. 2016. № 7. C. 90–101.doi: 10.21.285/1814-3520-2016-7-90-101
15. Старцев С.С. Модели распространения радиосигнала Wi-Fi [Электронный ресурс]. 2013. Режим доступа: http://conf.nsc.ru/files/conferences/MIT-2013/fulltext/146127/151267/Startsev.pdf (Дата обращения: 05.07.2017).
16. Дигрис А.В. Дискретно-событийное моделирование: курс лекций [Электронный ресурс]. Минск: БГУ, 2011. Режим доступа: http://elib.bsu.by/handle/123456789/48743. (Дата обращения: 21.06.2017).
17. Ns-3 [Электронный ресурс]. Режим доступа: http://www.nsnam.org. (Дата обращения: 05.07.2017).
18. Riverbed Modeler [Электронный ресурс]. Режим доступа: http://www.riverbed.com/ru/products/steelcentral/steelcentral-riverbed-modeler.html (Дата обращения: 05.07.2017).