Язык статьи - русский
Ссылка для цитирования: Алтухов А.И., Шабаков Е.И., Коршунов Д.С. Метод повышения контраста изображений в условиях съемки Земли из космоса // Научно-технический вестник информационных технологий, механики и оптики. 2018. Т. 18. № 4.
С. 573–580. doi: 10.17586/2226-1494-2018-18-4-573-580
Аннотация
Предмет исследования. Предложен метод повышения контраста изображений земной поверхности, получаемых с использованием бортовых оптико-электронных комплексов космических систем дистанционного зондирования. Актуальность предложенного метода подтверждается результатами оценивания контраста космических снимков, полученных с использованием современной регистрирующей аппаратуры, и результатами расчета контраста для моделируемых условий съемки. Метод. В основу метода положена идея совмещения космических снимков с разной экспозицией. Это позволяет получить результирующий снимок с расширенным динамическим диапазоном яркости. Такой снимок обладает высоким контрастом в области темных и светлых полутонов и лучше отображает детали наблюдаемых объектов. Основные результаты. Проведена оценка контраста изображения, полученного при выборе параметров съемки по традиционной методике. Сделан вывод о том, что качество получаемых снимков из космоса в настоящее время ограничено, так как параметры работы бортового оптико-электронного комплекса не позволяют учесть большое количество объектов с различными оптическими характеристиками, находящихся в пределах поля захвата регистрирующей аппаратуры. На основании исследований предложен подход к повышению контраста изображений, суть которого сводится к расширению динамического диапазона яркости и, как следствие, повышению контраста получаемых снимков. Практическая значимость. Предложенный метод к обработке данных дистанционного зондирования Земли позволяет получать пригодные для интерпретации снимки объектов, расположенных на земной поверхности в любых условиях освещенности. Это повысит точность информационного обеспечения при выполнении работ топогеодезического обеспечения и картографирования территорий.
Ключевые слова: совмещение изображений, экспозиция, динамический диапазон яркости изображений, качество космического снимка, контраст
Список литературы
1. Веселов Ю.Г., Островский А.С., Сельвесюк Н.И., Красавин И.В. Оценка предельного разрешения цифровых оптико-электронных систем дистанционного зондирования земли с использованием теории линейных систем // Известия ЮФУ. Технические науки. 2013. № 3(140). С. 84–89.
2. Григорьев А.Н., Коршунов Д.С., Беляев А.С. Прогнозирование качества космических снимков космических систем дистанционного зондирования // Труды Военно-космической академии им. А.Ф. Можайского. 2010. № 629. С. 143–147.
3. Григорьев А.Н., Дудин Е.А., Коршунов Д.С., Октябрьский В.В. Концептуальная и аналитическая модели ведения оптико-электронной съемки с априорной экспонометрией на борту космического аппарата // Современные проблемы ДЗЗ из космоса. 2017. Т. 14. № 3. С. 128–138.
4. Алтухов А.И., Гнусарев Н.В., Коршунов Д.С. Прогнозирование качества изображений космических объектов // Научно-технический вестник информационных технологий, механики и оптики. 2013. № 3(85). С. 36–41.
5. Занин К.А. Выбор параметров оптико-электронной космической системы наблюдения по качеству изображения // Полет. Общероссийскийнаучно-техническийжурнал. 2007. №11. C. 30–37.
6. Бакланов А.И. Системы наблюдения и мониторинга. М.: Бином, 2014. 234 с.
7. Алтухов А.И., Коршунов Д.С., Шабаков Е.И. Метод повышения качества снимков космических объектов // Научно-технический вестник информационных технологий, механики и оптики. 2014. №4. С. 35–40.
8. Алтухов А.И., Шабаков Е.И., Коршунов Д.С. Повышение качества изображений путем синтезирования космических снимков с разной экспозицией // Научно-технический вестник информационных технологий, механики и оптики. 2017. Т. 17. № 1. С. 24–30. doi:
10.17586/2226-1494-2017-17-1-24-30
9. Красильников Н.Н. Цифровая обработка 2Dи 3Dизображений. СПб.: БХВ-Петербург, 2011. 608 с.
10. Васильев А.С., Коротаев В.В., Краснящих А.В., Лашманов О.Ю., Ненарокомов О.Н. Совмещение тепловизионного и телевизионного изображений при обследовании строительных конструкций зданий и сооружений // Изв. вузов. Приборостроение. 2012. Т. 55. № 4. С. 12–16.
11. Васильев А.С., Краснящих А.В., Коротаев В.В., Лашманов О.Ю., Лысенко Д.Ю., Ненарокомов О.Н., Широков А.С., Ярышев С.Н. Разработка программно-аппаратного комплекса обнаружения лесных пожаров методом совмещения изображений // Изв. вузов. Приборостроение. 2012. Т. 55. № 12. С. 50–55.
12. Lashmanov O.U., Vasilev A.S., Vasileva A.V., Anisimov A.G., Korotaev V.V. High-precision absolute linear encoder based on a standard calibrated scale // Measurement. 2018. V. 123.
P. 226–234. doi: 10.1016/j.measurement.2018.03.071
13. Коротаев В.В., Мельников Г.С., Михеев С.В., Самков В.М., Солдатов Ю.И. Основы тепловидения. СПб.: НИУИТМО, 2012. 122 с.
14. Горбачёв А.А., Коротаев В.В., Ярышев С.Н. Твердотельные матричные фотопреобразователи и камеры на их основе. СПб.: НИУ ИТМО, 2013. 98 с.
15. Korotaev V.V., Maraev A.A. Sources and Detectors of Optical Radiation. St. Petersburg, ITMO University, 2017. 104 p.