НИКИФОРОВ
Владимир Олегович
д.т.н., профессор
doi: 10.17586/2226-1494-2018-18-4-677-685
УДК 531.231
МОДЕЛИРОВАНИЕ ПРОЦЕССА ФОРМИРОВАНИЯ МОМЕНТОВ ИНЕРЦИИ РОТОРОВ ШАРОВЫХ ГИРОСКОПОВ
Читать статью полностью
Ссылка для цитирования: Юльметова О.С., Щербак А.Г. Моделирование процесса формирования моментов инерции роторов шаровых гироскопов // Научно-технический вестник информационных технологий, механики и оптики. 2018. Т. 18. № 4. С. 677–685. doi: 10.17586/2226-1494-2018-18-4-677-685
Аннотация
Предмет исследования.Предложены принципы, условия и технические решения процесса создания моментов инерции сферических роторов, основанные на перераспределении массы формируемых на поверхности заготовки ротора функциональных покрытий. Исследована технология формирования требуемых величин и соотношения осевого и экваториального моментов инерции сферического узла, являющегося ротором шарового гироскопа. Традиционные методы формирования моментов инерции сплошных роторов основаны на размещении армирующих элементов, выполненных из материалов, имеющих плотность, отличающуюся от плотности основы, в теле ротора. Это осуществляется запрессовкой проволочных отрезков или диффузионной сваркой сборочных единиц ротора. В этом случае ротор состоит из нескольких составных частей, а сами армирующие элементы, внедренные в тело ротора, создают неоднородности и анизотропию свойств узла, что снижает точность ротора и негативно влияет на динамику ротора в подвесе. Кроме того, существующие методы имеют ограничения в части возможности использования неметаллических материалов для изготовления ротора. Метод. Предложен альтернативный метод формирования момента инерции ротора, который может быть использован как для металлических, так и неметаллических сферических заготовок. Суть метода заключается в формировании моментов инерции сферического узла за счет перераспределения массы формируемого на поверхности заготовки ротора функционального покрытия заданной конфигурации. Представлены математические модели для реализации предложенного метода. Основные результаты. Разработанные математические модели определяют зависимость моментов инерции от геометрических параметров заготовок ротора, а также позволяют выявить значимые факторы, позволяющие управлять процессом формирования моментов инерции. Приведены технические решения по конструктивному оформлению заготовок роторов: эллипсоид вращения, шар, у которого в зоне сферического пояса производится съем материала в виде кольцевого фрагмента, и шар с экваториальной канавкой, в котором последующее формирование сферической формы ротора осуществляется путем напыления покрытия. Практическая значимость. Представлен сравнительный анализ эффективности использования разработанных конфигураций заготовок и данных их практического использования при изготовлении реальных роторов, выполненных из различных материалов. Разработаны средства математического обеспечения, определяющие области варьирования геометрических параметров роторов и расширяющие технологические возможности процесса формирования моментов инерции за счет использования моделей для различных альтернативных вариантов изготовления роторов.
Список литературы
-
Egorov A.V., Landau B.E., Levin S.L., Romanenko S.G. Rotor motion in a strapdown electrostatic gyro onboard an orbiting spacecraft // Gyroscopy and Navigation. 2012. N 3. P. 144–151. doi: 10.1134/S2075108712020034
-
Peshekhonov V.G. Gyroscopic navigation systems: current status and prospects // Gyroscopy and Navigation. 2011. V. 2. N 3. P. 111–118. doi: 10.1134/S2075108711030096
-
Гормаков А.Н., Выонг С.Ч.Автоматизированная установка для определения моментов инерции деталей и узлов приборов // Вестник науки Сибири. 2014. №2 (12). С. 94–100.
-
Zhang J., Chao Q., Xu B. Analysis of the cylinder block tilting inertia moment and its effect on the performance of high-speed electro-hydrostatic actuator pumps of aircraft // Chinese Journal of Aeronautics. 2018. V. 3. N 1. P. 169–177. doi: 10.1016/j.cja.2017.02.010
-
Юльметова О.С., Ландау Б.Е., Щербак А.Г. Системный анализ процесса создания ротора шарового гироскопа на основе использования ионно-плазменных технологий // Фундаментальные исследования. 2017. № 12-1. С. 163–168.
-
Юльметова О.С., Туманова М.А., Щербак А.Г. Исследование процесса корректировки дисбаланса сферического ротора на стадии напыления тонкопленочного покрытия // Научно-технический вестник информационных технологий, механики и оптики. 2017. Т. 17. № 6. С. 1045–1051. doi: 10.17586/2226-1494-2017-17-6-1045-1051
-
Щербак А.Г., Кедров В.Г.Технология прецизионной диффузионной сварки в точном приборостроении. СПб.: ГНЦ РФ ЦНИИ «Электроприбор», 1996. 166 с.
-
Ландау Б.Е., Буцык А.Я., Беляев С.Н., Буравлев А.П., Щербак А.Г. Способ изготовления ротора шарового гироскопа // Патент РФ № 2286535. Бюл. № 30, 27.10.2006.
-
YulmetovaO.S., TumanovaM.A.Lasermarkingofcontrastimagesforopticalread-outsystems//JournalofPhysics: ConferenceSeries. 2017.V. 917. N 3. doi: 10.1088/1742-6596/917/5/052007
-
Scherbak A., Yulmetova O. Contrast image formation based on thermodynamic approach and surface laser oxidation process for optoelectronic read-out system // Optics and Laser Technology.2018. V. 101. P. 242–247. doi: 10.1016/j.optlastec.2017.11.030
-
Махаев Е.А., Рябова Л.П., Чесноков П.А. и др. Разработка конструкции и технологии изготовления ротора криогироскопа // Материалы XXX конференции памяти Н.Н. Острякова. Санкт-Петербург, 2016. С. 116–123.
-
Everitt C.W.F. et al. Gravity probe B: final results of a space experiment to test general relativity // Physical Review Letters. 2011. V. 106. N 22. doi: 10.1103/PhysRevLett.106.221101
-
Фаворин M.В.Моменты инерциител. Справочник. M.: Машиностроение, 1970. 312 с.
-
Ram H.D., Chauhan A.K.Foundations and Applications of Engineering Mechanics. Cambridge University Press,2015. 646 p.