Меню
Публикации
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
Главный редактор

НИКИФОРОВ
Владимир Олегович
д.т.н., профессор
Партнеры
doi: 10.17586/2226-1494-2019-19-6-1106-1114
УДК 621.01, 621.837.31
ЭНЕРГЕТИЧЕСКИЙ АНАЛИЗ БИОИНСПИРИРОВАННОГО МЕХАНИЗМА НОГИ ГАЛОПИРУЮЩЕГО РОБОТА-ГЕПАРДА
Читать статью полностью

Язык статьи - русский
Ссылка для цитирования:
Аннотация
Ссылка для цитирования:
Борисов И.И., Колюбин С.А. Энергетический анализ биоинспирированного механизма ноги галопирующего робота-гепарда // Научно-технический вестник информационных технологий, механики и оптики. 2019. Т. 19. № 6. С. 1106–1114. doi: 10.17586/2226-1494-2019-19-6-1106-1114
Аннотация
Предмет исследования. Представлены результаты исследования методов проектирования локомоционных роботов на примере создания высокоскоростного, энергоэффективного робота-гепарда, способного перемещаться по пересеченной местности. Рассмотрен энергетический анализ механизма бедра ноги робота, принцип работы которого основан на резонансе гибкого элемента, вызванного автоколебаниями инерционной массы. Разработанная конструкция рассмотрена в виде модели перевернутого пружинного маятника, гибкий элемент которого необходим для обеспечения гармонического поведения тела робота, стабильного взаимодействия с поверхностью пола, поглощения ударной силы и рекуперации энергии перемещения. Метод. При проектировании биоинспирированных робототехнических устройств предложено использовать методы биомиметики, которые заключаются в воспроизведении уникальных качеств и характеристик живых систем, а не только в имитации внешнего вида. Представленная конструкция имитирует динамику ноги прыгающего животного благодаря гармоническому характеру перемещения, вызванного вынужденной периодической силой инерции массы тела робота. Гармоническое усилие, вызывающее автоколебания, выведено с помощью уравнения динамики Лагранжа. Приведено обобщенное описание динамики робота в виде структуры Пуассона, используемой при представлении системы при помощи порт-Гамильтонового подхода. Основные результаты. Получены временные зависимости обмена энергиями и мощностями: для пружинного маятника при наличии и отсутствии внешней возбуждающей силой; механизма бедра, названного «минитаур» при наличии и отсутствии внутренней инерционной силы, вызывающей автоколебания инерционной массы тела робота в режиме прыжка на месте. Представлены графики зависимостей коэффициента затрат энергии на перемещение от конфигурации механизма и жесткости пружины при беге. Практическая значимость. Представленный анализ необходим для определения количества энергии в системе, выявления способов сохранения энергетического бюджета, причин его расходования и способов восполнения.
Ключевые слова: галопирующий робот, энергетический анализ машин, энергоэффективность
Благодарности. Исследование выполнено за счет гранта Университета ИТМО (проект №418233). Авторы выражают особую благодарность Стефано Страмиджиоли за оказанную помощь в данной работе.
Список литературы
Благодарности. Исследование выполнено за счет гранта Университета ИТМО (проект №418233). Авторы выражают особую благодарность Стефано Страмиджиоли за оказанную помощь в данной работе.
Список литературы
- Bertram J.E.A., Gutmann A. Motions of the running horse and cheetah revisited: fundamental mechanics of the transverse and rotary gallop // Journal of the Royal Society Interface. 2009. V. 6. N 35. P. 549–559. doi: 10.1098/rsif.2008.0328
- Wanders I., Folkertsma G.A., Stramigioli S. Design and analysis of an optimal hopper for use in resonance-based locomotion // Proc. IEEE International Conference on Robotics and Automation (ICRA 2015). 2015. P. 5197–5202. doi: 10.1109/ICRA.2015.7139923
- Sakagami Y., Watanabe R., Aoyama C., Matsunaga S., Higaki N., Fujimura K. The intelligent ASIMO: System overview and integration // Proc. IEEE/RSJ International Conference on Intelligent Robots And Systems. 2002. V. 3. P. 2478–2483.
- Park I.W., Kim J.-Y., Lee J., Oh J.-H. Mechanical design of humanoid robot platform KHR-3 (KAIST humanoid robot 3: HUBO) // Proc. 5th IEEE-RAS International Conference on Humanoid Robots. 2005. P. 321–326. doi: 10.1109/ICHR.2005.1573587
- Duindam V., Stramigioli S. Modeling and Control for Efficient Bipedal Walking Robots: A Port-Based Approach. Springer-Verlag Berlin Heidelberg, 2009. 214 p. doi: 10.1007/978-3-540-89918-1
- Raibert M., Blankespoor K., Nelson G., Playter R. Bigdog, the rough-terrain quadruped robot // IFAC Proceedings Volumes. 2008. V. 41. N 2. P. 10822–10825. doi: 10.3182/20080706-5-KR-1001.01833
- Seok S., Wang A., Chuah M.Y., Hyun D.J., Lee J., Otten D.M., Lang J.H., Kim S. Design principles for energy-efficient legged locomotion and implementation on the MIT cheetah robot // IEEE/ASME Transactions on Mechatronics. 2015. V. 20. N 3. P. 1117–1129. doi: 10.1109/TMECH.2014.2339013
- Cotton S., Olaru I.M.C., Bellman M., Van Der Ven T., Godowski J., Pratt J. FastRunner: A fast, efficient and robust bipedal robot. concept and planar simulation // Proc. IEEE International Conference on Robotics and Automation (ICRA 2012). 2012. P. 2358–2364. doi: 10.1109/ICRA.2012.6225250
- Folkertsma G.A., Kim S., Stramigioli S. Parallel stiffness in a bounding quadruped with flexible spine // Proc. 25th IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2012). 2012. P. 2210–2215. doi: 10.1109/IROS.2012.6385870
- Tedrake R., Zhang T.W., Fong M.-F., Seung H.S. Actuating a simple 3D passive dynamic walker // Proc. IEEE International Conference on Robotics and Automation, ICRA'04. 2004. N 5. P. 4656–4661.
- Folkertsma G.A. Energy-based and biomimetic robotics. University of Twente, 2017. doi: 10.3990/1.9789036543163
- Folkertsma G.A., van der Schaft A.J., Stramigioli S. Morphological computation in a fast-running quadruped with elastic spine // IFAC-PapersOnLine. 2015. V. 48. N 13. P. 170–175. doi: 10.1016/j.ifacol.2015.10.234
- Snippe M. Cheetah robot leg mechanism: analysis, design and cost of transport. University of Twente, 2017.
- Kenneally G., De A., Koditschek D.E. Design principles for a family of direct-drive legged robots // IEEE Robotics and Automation Letters. 2016. V. 1. N 2. P. 900–907. doi: 10.1109/LRA.2016.2528294