doi: 10.17586/2226-1494-2020-20-5-634-641


УДК 538.958

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ПАРАМЕТРОВ ЛАЗЕРНОЙ ОБРАБОТКИ НА СПЕКТРАЛЬНЫЕ ХАРАКТЕРИСТИКИ СЕРЕБРОСОДЕРЖАЩИХ ПЛЕНОКДИОКСИДА ТИТАНА
 

Варламов П.В., Михайлова Ю.В., Андреева Я.М., Сергеев М.М.


Читать статью полностью 
Язык статьи - русский

Ссылка для цитирования:
Варламов П.В., Михайлова Ю.В., Андреева Я.М., Сергеев М.М. Исследование влияния параметров лазерной обработки на спектральные характеристики серебросодержащих пленок диоксида титана // Научно-технический вестник информационных технологий, механики и оптики. 2020. Т. 20. № 5. С. 634–641. doi: 10.17586/2226-1494-2020-20-5-634-641


Аннотация
Предмет исследования. Локальное и точное управление оптическими свойствами нанокомпозитных материалов становится возможным благодаря использованию лазерного излучения в качестве инструмента для их формирования и модификации. Однако, для разработки конкретных устройств требуется знать взаимосвязи режимов лазерного воздействия со спектральными характеристиками полученных материалов, которые, как правило, связаны с размером и распределением наночастиц. В работе представлены результаты исследования влияния параметров непрерывного лазерного воздействия на спектры отражения нанокомпозитного материала на основе диоксида титана. Методы. Исследуемые образцы представляли собой тонкие мезопористые золь-гель пленки диоксида титана, нанесенные на стеклянную подложку и содержащие малые (не более 5–7 нм) наночастицы серебра. В качестве источника излучения использовался непрерывный ультрафиолетовый лазер с длиной волны 405 нм. Изменение спектров отражения образцов регистрировалось после лазерной обработки, в непрерывном режиме методами оптической спектрофотометрии в диапазоне длин волн 350–760 нм. Основные результаты. Записан массив лазерных треков с такими параметрами обработки как скорость сканирования и средняя мощность излучения. Каждый записанный трек обладал выраженными визуально различимыми центральной и краевой областями. Анализ экспериментальных данных показал, что в исследуемых областях, происходит смещение положения пика в спектрах отражения в диапазоне 380–440 нм. Результаты эксперимента сопоставлены с математической моделью эффективной среды в приближении Бруггемана–Бергмана. Установлено, что размеры и ширина распределения наночастиц серебра на краях и в центре лазерного трека могут отличаться. Увеличение скорости сканирования и уменьшение средней мощности излучения приводит к увеличению размеров наночастиц, что связано с изменением распределения температуры. Практическая значимость. Определены способы направленного изменения спектральных свойств тонких серебросодержащих золь-гель пленок диоксида титана при локальном управляемом лазерном облучении и связанным с ним изменении размеров наночастиц серебра в составе пленок. Полученные результаты могут найти применение в таких научных областях, как интегральная оптика, фотоника, биосенсорика, изготовлении фотокаталитических устройств и защитных меток.

Ключевые слова: пористые золь-гель пленки TiO2, наночастицы серебра, модель эффективных сред, непрерывный ультрафиолетовый лазер, спектры отражения

Благодарности. Авторы выражают благодарность коллективу лаборатории Юбера Кюрьена за предоставленные образцы золь-гель пленок диоксида титана. Исследование выполнено за счет гранта Российского научного фонда (проект № 19-7910-208).

Список литературы
1. Pathak T.K., Kumar V., Purohit L.P. Sputtered Al–N codoped p-type transparent ZnO thin films suitable for optoelectronic devices // Optik. 2016. V. 127. N 2. P. 603–607. doi: 10.1016/j.ijleo.2015.10.013
2. Znaidi L., Touam T., Vrel D., Souded N., Yahia S.B., Brinza O., Fischer A., Boudrioua A. AZO thin films by sol-gel process for integrated optics // Coatings. 2013. V. 3. N 3. P. 126–139. doi: 10.3390/coatings3030126
3. Arya S., Saha S., Ramirez-Vick J.E., Gupta V., Bhansali S., Singh S.P. Recent advances in ZnO nanostructures and thin films for biosensor applications: Review // Analytica Chimica Acta. 2012. V. 737. P. 1–21. doi: 10.1016/j.aca.2012.05.048
4. Li M., Chokshi N., DeLeon R.L., Tompa G., Anderson W.A. Radio frequency sputtered zinc oxide thin films with application to metal-semiconductor-metal photodetectors // Thin Solid Films. 2007. V. 515. N 18. P. 7357–7363. doi: 10.1016/j.tsf.2007.03.026
5. Sidorov A.I., Tung N.D., Van Vu N., Nikonorov N.V. Synthesis and characterization of oriented silver nanospheroids in glass // Plasmonics. 2019. V. 14. N 4. P. 979–983. doi: 10.1007/s11468-018-0883-3
6. Wong Z.J., Wang Y., O'Brien K., Rho J., Yin X., Zhang S., Fang N., Yen T.-J., Zhang X. Optical and acoustic metamaterials: superlens, negative refractive index and invisibility cloak // Journal of Optics. 2017. V. 19. N 8. P. 84007. doi: 10.1088/2040-8986/aa7a1f
7. Zhang G., Li G., Zhang Y., Wang X., Cheng G. Method of encapsulating silver nanodots using porous glass and its application in Q-switched all solid-state laser // Optics Express. 2019. V. 27. N 4. P. 5337–5345. doi: 10.1364/OE.27.005337
8. Stalmashonak A., Abdolvand A., Seifert G. Metal-glass nanocomposite for optical storage of information // Applied Physics Letters. 2011. V. 99. N 20. P. 201904. doi: 10.1063/1.3660740
9. Stalmashonak A., Seifert G., Abdolvand A. Ultra-Short Pulsed Laser Engineered Metal-Glass Nanocomposites. Springer, 2013. 70 p. (SpringerBriefs in Physics). doi: 10.1007/978-3-319-00437-2
10. Royon A., Bourhis K., Bellec M., Papon G., Bousquet B., Deshayes Y., Cardinal T., Canioni L. Silver clusters embedded in glass as a perennial high capacity optical recording medium // Advanced Materials. 2010. V. 22. N 46. P. 5282–5286. doi: 10.1002/adma.201002413
11. Langlet M., Sow I., Briche S., Messaoud M., Chaix-Pluchery O., Dherbey-Roussel F., Chaudouët P., Stambouli V. Elaboration of an Ag°/TiO2 platform for DNA detection by surface enhanced Raman spectroscopy // Surface Science. 2011. V. 605. N 23-24. P. 2067–2072. doi: 10.1016/j.susc.2011.08.007
12. Kawata S., Ichimura T., Taguchi A., Kumamoto Y. Nano-Raman scattering microscopy: resolution and enhancement // Chemical Reviews. 2017. V. 117. N 7. P. 4983–5001. doi: 10.1021/acs.chemrev.6b00560
13. Chen T., Chen G., Xing S., Wu T., Chen H. Scalable routes to janus Au-SiO2 and ternary Ag-Au-SiO2 nanoparticles // Chemistry of Materials. 2010. V. 22. N 13. P. 3826–3828. doi: 10.1021/cm101155v
14. Сгибнев Е., Никоноров Н.В., Игнатьев А.И., Стародубов Д.С. Люминесцентные свойства кластеров серебра, сформированных методом ионного обмена в фото-термо-рефрактивном стекле // Научно-технический вестник информационных технологий, механики и оптики. 2016. Т. 16. № 6. С. 1031–1037. doi: 10.17586/2226-1494-2016-16-6-1031-1037
15. Kavetskyy T., Kravtsiv M.M., Telbiz G.M., Nuzhdin V.I., Valeev V.F., Stepanov A.L. Surface plasmon resonance band of ion-synthesized Ag nanoparticles in high dose Ag:PMMA nanocomposite films // NATO Science for Peace and Security Series B: Physics and Biophysics. 2018. P. 43–47. doi: 10.1007/978-94-024-1298-7_5
16. Makarov G.N. Laser applications in nanotechnology: nanofabrication using laser ablation and laser nanolithography // Physics-Uspekhi. 2013. V. 56. N 7. P. 643–682. doi: 10.3367/UFNe.0183.201307a.0673
17. Nadar L., Sayah R., Vocanson F., Crespo-Monteiro N., Boukenter A., Sao Joao S., Destouches N. Influence of reduction processes on the colour and photochromism of amorphous mesoporous TiO2 thin films loaded with a silver salt // Photochemical and Photobiological Sciences. 2011. V. 10. N 11. P. 1810–1816. doi: 10.1039/c1pp05172e
18. Garcia M.A. Surface plasmons in metallic nanoparticles: fundamentals and applications // Journal of Physics D: Applied Physics. 2011. V. 44. N 28. P. 283001. doi: 10.1088/0022-3727/44/28/283001
19. Liu Z., Destouches N., Vitrant G., Lefkir Y., Epicier T., Vocanson F., Bakhti S., Fang Y., Bandyopadhyay B., Ahmed M. Understanding the growth mechanisms of Ag nanoparticles controlled by plasmon-induced charge transfers in Ag-TiO2 films // Journal of Physical Chemistry C. 2015. V. 119. N 17. P. 9496–9505. doi: 10.1021/acs.jpcc.5b01350
20. Kreibig U., Vollmer M. Optical Properties of Metal Clusters. Springer-Verlag, 1995. 535 p. doi: 10.1007/978-3-662-09109-8
21. Sancho-Parramon J., Bosch S., Abdolvand A., Podlipensky A., Seifert G., Graene H. Effective medium models for metal-dielectric composites: An analysis based on the spectral density theory // Proceedings of SPIE. 2005. V. 5963. P. 596320. doi: 10.1117/12.625125
22. Cavaliere E., Benetti G., Van Bael M., Winckelmans N., Bals S., Gavioli L. Exploring the optical and morphological properties of Ag and Ag/TiO₂ nanocomposites grown by supersonic cluster beam deposition // Nanomaterials. 2017. V. 7. N 12. P. 442. doi: 10.3390/nano7120442


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Информация 2001-2024 ©
Научно-технический вестник информационных технологий, механики и оптики.
Все права защищены.

Яндекс.Метрика